

Elements of Electronics Engineering

Question Bank

Unit – 1

Part – 1 Knowledge/Understanding

1. Explain the forward and reverse biased condition of PN junction. 6 Marks
2. Explain the V-I characteristics of PN junction diode with Shockley's equation 8 Marks
3. Explain the working of Half - Wave Rectifier with circuit diagram and wave form. 6 Marks
4. Explain the working of Full - Wave Bridge Rectifier with circuit diagram and wave form. 6 Marks
5. Explain the working of Half - Wave Rectifier with capacitor filter with the help of circuit diagram and wave form. 6 Marks
6. Explain the working of Full - Wave Bridge Rectifier with capacitor filter with the help of circuit diagram and wave form. 6 Marks
7. What is Regulated power supply? Explain with block diagram. 6 Marks
8. Explain the avalanche and Zener breakdown. 4 Marks
9. Explain load and line regulation of Zener diode. 5 Marks
10. Define the following: 6 Marks
 - a. PIV b. Reverse break down voltage c. knee voltage d. Reverse saturation current
 - e. Maximum forward current f. maximum power rating.
11. Compare Half-wave and Full- wave rectifier. 5 Marks
12. List the advantages and disadvantages of half-wave and Bridge rectifier. 6 Marks

Part – 2(Apply)

1. Derive the expression for Ripple factor and efficiency of Half-wave rectifier. 10 Marks
2. Derive the expression for Ripple factor and efficiency of Bridge rectifier. 10 Marks
3. The saturation current density of a pn junction Ge diode is 250mA/m^2 at 300^0K . Find the voltage that must be applied across junction to cause forward current density of 10^5A/m^2 to flow. $I_s = \checkmark$ $I_d = ?$ 5 Marks
4. A Ge diode is used in a rectifier circuit and is operating at a temperature of 25^0C with a reverse saturation current of $1000\mu\text{A}$. Calculate the value of forward current if it is forward biased by 0.22V. Assume the value of $\eta=1$ for Ge diode. 4 Marks
5. A half wave rectifier circuit is supplied from a 230V, 50Hz supply with a step-down ratio of 3:1 to a resistive load of $10\text{k}\Omega$. Diode forward resistance is 75Ω , while transformer secondary resistance is 10Ω . Calculate maximum, average, RMS value of current, DC output voltage, efficiency of rectification and ripple factor. 10 Marks
6. A diode with $V_f=0.7\text{V}$ is connected as a half wave rectifier. The load resistance is $600\ \Omega$ and the RMS AC input is 24V. Determine the peak output voltage, peak load current and diode reverse voltage. 6 Marks
7. A $5\text{K}\Omega$ load is fed from bridge connected across a transformer secondary whose primary is connected to 460V, 50Hz supply. The ratio of number of primary turns to secondary turns is 2:1. Calculate DC load voltage, DC load current, ripple voltage and PIV rating of diode. 8 Marks
8. The four diodes in a bridge rectifier circuit have negligible forward resistance and infinite reverse resistance. The ac supply is 240Vrms and load resistance is 48Ω . Calculate the average load current and efficiency. 4 Marks
9. A bridge rectifier has a load of $2\text{K}\Omega$. The AC voltage applied to the diodes is 200-0-200V. Assuming ideal diodes, calculate i) Average DC current ii) Average DC voltage and iii) Ripple voltage. If a capacitor of value $500\mu\text{F}$ is connected across the load. What is the new value of the ripple voltage. Assume $f=50\text{Hz}$. 8 Marks
10. For a Zener regulator $R=2.2\text{K }\Omega$, $RL=1\text{K }\Omega$, calculate the range of input voltage for which output will remain constant. $V_Z=6.1\text{V}$, $I_{Z\min}=2.5\text{mA}$, $I_{Z\max}=25\text{mA}$, $R_Z=0\ \Omega$. 6 Marks
11. In a Zener voltage regulator $R=1\text{k }\Omega$, $v_{in}=50\text{V}$, Zener ratings are $V_Z=10\text{V}$, $I_{Z\min}=5\text{mA}$, $I_{Z\max}=32\text{mA}$, $R_Z=0\ \Omega$. Find the range of RL , IL for a load voltage to be constant. What is the maximum wattage of diode. 6 Marks

Part 3 (Analysis/Design)

1. Design a zener regulator for following specification: Load current $I_L = 20\text{mA}$ output voltage $V_0 = 5 \text{ V}$, Zener wattage $P_z = 500\text{mW}$, Input voltage $V_i = 12+2\text{V}$ and $I_{Z\min} = 8 \text{ mA}$. 5 Marks
2. A 9V reference source is to be designed using a Zener diode and a resistor connected in Series to a 30V supply. Select suitable components and calculate the circuit current when the supply voltage drops to 27V. Assume Zener current is 20mA. 5 Marks