

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

May 2023 Semester End Main Examinations

Programme: B.E.

Branch: Common to all Branches

Course Code: 22EEE1ESEEE

Course: ELEMENTS OF ELECTRICAL ENGINEERING

Semester: I

Duration: 3 hrs.

Max Marks: 100

Date: 15.05.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1	a) Explain KCL and KVL with examples.	05
	b) Explain the construction and working of a DC machine.	08
	c) Find the current in all the branches of the network shown in figure:1.	07

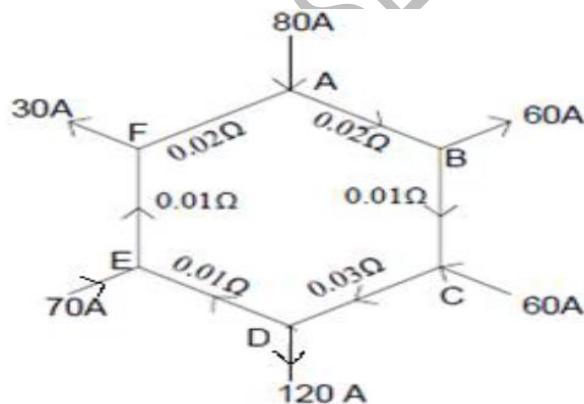


Figure : 1

OR

2	a) Determine the current supplied by each battery for the circuit shown, in the Figure:2 By using Kirchhoff's laws	08
---	--	-----------

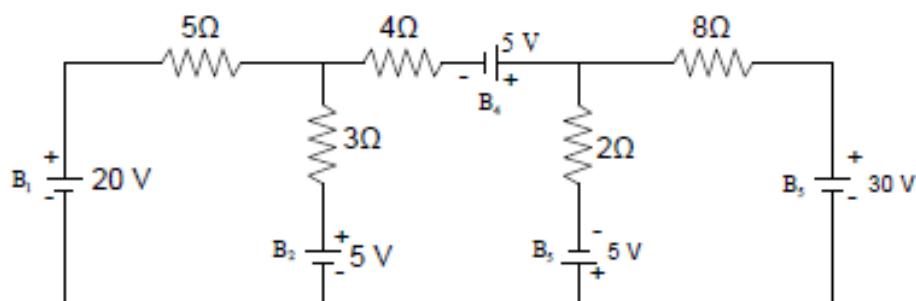


Figure : 2

b) A 4 Pole 250V, dc series motor has a wave-connected armature with 200 conductors. The flux per pole is 25mwb when the motor is taking 60A from the supply. The armature resistance is 0.15Ω , while series field winding resistance is 0.2Ω . Calculate the speed of the motor under this condition. **06**

c) Explain the N versus I_a characteristics of a DC shunt and DC series motor. **06**

UNIT - II

3 a) Derive the RMS and average of value of a sinusoidal alternating quantity and find out form factor for the same. **08**

b) An alternating voltage of $(160 + j120)$ is applied to a circuit and the current is given by $(6 + j8)$ A. Find the values of element of the circuit assuming 50Hz frequency, power factor of the circuit and power consumed. **06**

c) Define form factor, peak factor and frequency **06**

UNIT - III

4 a) Derive the relation between line voltage and phase voltage in star connected network and calculate the power. **08**

b) Three impedances each of $6 + j8\Omega$ are connected in delta across $415V$, 3ϕ , 50Hz ac supply. Determine (i) Line Current, (ii) Power factor, (iii) Active Power (P), (iv) Reactive Power (Q), (v) Apparent Power (S) **08**

c) Explain the advantages of three phase system over single phase system. **04**

UNIT - IV

5 a) Explain the concept of rotating magnetic field by considering 3 phase induction motor. **07**

b) Derive the EMF equation of a transformer. **05**

c) In a 25 kVA 2000V/200V, single phase transformer the iron and full load copper losses are 350W and 400W respectively. Calculate the efficiency at unity power factor on
 (i) Full Load
 (ii) Half full Load **08**

OR

6 a) Explain the construction and working of a single phase transformer. **08**

b) Define slip, rotor frequency and slip speed. **06**

c) The frequency of emf in the stator of a 3ϕ , 4 pole induction motor is 50Hz that in the rotor is 1.5Hz. What is the slip? At what speed the motor is running. Also determine synchronous speed. **06**

UNIT - V

7 a) With a neat sketch explain the necessity of earthing and explain plate earthing. **08**

b) Define fuse and its characteristics. **05**

c) With neat block diagram explain the working of Electric vehicle. **07**
