

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2025 Semester End Main Examinations

Programme: B.E.

Branch: Electrical and Electronics Engineering

Course Code: 22EE1ESEEE

Course: Elements of Electrical Engineering

Semester: I

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	State & explain the Kirchhoff's Laws with an example.	CO1	PO1	06
		b)	A resistance of 10Ω is connected in series with two resistances each of 15Ω arranged in parallel. What resistance must be shunted across this parallel combination, so that the total current taken shall be 1.5 A with 20 V supply?	CO2	PO1	07
		c)	With neat circuit and equations explain DC series and DC shunt motor.	CO3	PO2	07
OR						
	2	a)	State & explain Ohm's Law. What are its limitations?	CO1	PO1	04
		b)	Define back emf and derive for it. Mention its significance.	CO3	PO2	08
		c)	A 4-pole DC motor is connected to a 500 V supply & takes armature current of 80 A . The resistance of the armature circuit is 0.4Ω . The armature is wave wound with 522 conductors & the useful flux/pole is 0.025 wb . Calculate: i) Speed of the motor & ii) torque developed by the armature.	CO3	PO2	08
UNIT - II						
	3	a)	Show that the average power absorbed by a pure capacitive circuit with sinusoidal excitation is zero. Also draw the waveforms of applied voltage, resulting current, power & the vector diagram for the above circuit.	CO3	PO2	08
		b)	Define the following with respect to single phase AC waveforms: i) RMS value ii) Average value iii) form factor	CO1	PO1	06
		c)	An inductive coil takes 10 A & dissipates 1000 W when connected to a supply at 250 V , 25 Hz . Calculate i) Impedance ii) resistance and inductance of the coil iii) power factor of the coil.	CO3	PO2	06
OR						
	4	a)	Define and derive an expression for RMS value of a quantity.	CO1	PO1	06

	b)	Show that the average power absorbed by a pure inductive circuit with sinusoidal excitation is zero. Also draw the waveforms of applied voltage, resulting current, power & the vector diagram for the above circuit.	CO3	PO2	08
	c)	A coil having a resistance of 5Ω and an inductance of 0.02 H is arranged in parallel with another coil having a resistance of 1Ω and an inductance of 0.08 H . Calculate the total current and the total power absorbed when a voltage of 100 V at 50 Hz is applied across this combination.	CO3	PO2	06
UNIT - III					
5	a)	What is the necessity & advantages of 3-phase over the single-phase circuits?	CO1	PO1	06
	b)	Obtain the relationship between the phase & line values of voltages & currents in a balanced star connected system.	CO3	PO2	08
	c)	Three identical impedances of $(10+j15) \Omega$ is connected in star. If the total current supplied is 15 A , what is the power drawn by the load?	CO3	PO2	06
OR					
6	a)	With neat waveforms and equations explain how three phase waveforms are generated.	CO1	PO1	06
	b)	Obtain the relationship between the phase & line values of voltages & currents in a balanced delta connected system.	CO3	PO2	08
	c)	Three identical impedances are connected in delta to a 3ϕ supply of 400 V . The line current is 35 A and the total power taken from the supply is 15 kW . Calculate the resistance and reactance values of each impedance	CO3	PO2	06
UNIT - IV					
7	a)	Derive an emf equation of a single-phase transformer?	CO1	PO1	06
	b)	What are the various losses that occur in a transformer? Discuss the losses	CO1	PO1	07
	c)	The frequency of the emf in the stator of 4-pole induction motor is 50 Hz & in the rotor is 1.5 Hz . What is the slip & at what speed is the motor running?	CO3	PO2	07
OR					
8	a)	Explain briefly the concept of rotating magnetic field developed in an induction motor.	CO3	PO2	06
	b)	Explain the constructional details of different types of rotors in 3-phase induction motor.	CO1	PO1	08
	c)	A 250 kVA , $11\text{kV}/415 \text{ V}$, 50 Hz 1-phase transformer has 80 turns on the secondary. Calculate: i) The rated primary & secondary currents ii) The no. of primary turns iii) The maximum value of flux	CO3	PO2	06
UNIT - V					
9	a)	What is necessity of earthing of electrical equipment? explain with neat diagram any one method of earthing?	CO4	PO6	08

	b)	<p>The domestic power load in a house comprises the following: 8 lamps of 60W each, 3 fans of 70W each, 1 refrigerator of 200W, 1 heater of 1000W.</p> <p>Calculate i) The total current taken from the supply of 230V. ii) The energy consumed in a day iii) The total energy consumed for the month of January</p>	CO4	PO6	06
	c)	What is electric shock? State the necessary safety precautions to be taken to avoid electric shock.	CO4	PO6	06
OR					
10	a)	With neat sketch explain RCCB.	CO4	PO6	07
	b)	Define fuse. With neat diagram Explain HRC fuse.	CO4	PO6	06
	c)	Define earthing. With neat diagram explain plate earthing.	CO4	PO6	07

B.M.S.C.E. - ODD SEM 2024-25