

B.M.S. College of Engineering, Bengaluru-560019

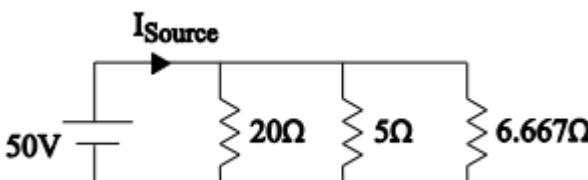
Autonomous Institute Affiliated to VTU

February / March 2025 Semester End Main Examinations

Programme: B.E.

Branch: Common to all Branches

Course Code: 18EE1ESELE / 18EE2ESELE


Course: Elements of Electrical Engineering

Semester: I / II

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Derive an expression for torque equation of a DC motor.	<i>CO1</i>	<i>PO1</i>	06
	b)	State and Explain super position theorem with suitable example.	<i>CO1</i>	<i>PO1</i>	06
	c)	For the circuit shown in Fig 1 (c), Find the value of I_{source} .	<i>CO3</i>	<i>PO2</i>	08
OR					
2	a)	What is back EMF in a DC motor? Derive for it.	<i>CO1</i>	<i>PO1</i>	06
	b)	For the circuit shown in Fig 2 (b), Find current in 5 ohms using superposition theorem.	<i>CO3</i>	<i>PO2</i>	08
Fig 1 (c)					
UNIT - II					
3	a)	Derive and expression for RMS and Average value of a sinusoidal quantity.	<i>CO1</i>	<i>PO1</i>	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

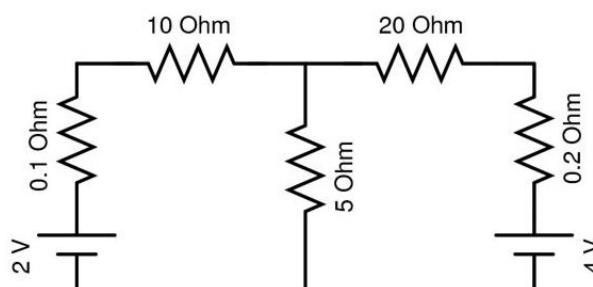


Fig 2 (b)

	b)	Derive an expression for power for a series RL circuit. Represent with waveforms and phasor diagrams.	CO2	PO1	06
	c)	In the arrangement shown in the Figure 3.C. Calculate the impedance between AB	CO3	PO2	08
		Figure 3.C			
		OR			
4	a)	Show that power consumption in a pure capacitor is zero when an AC voltage is applied across it. Represent with relevant waveforms and phasor diagrams.	CO2	PO1	06
	b)	Define the following with respect to AC circuit: a. Cycle b. Frequency c. Time period	CO2	PO1	06
	c)	When 1 A is passed through 3 air cored coil A, B, C in series, the voltage drops are respectively, 6, 3 and 8 V on direct current and 7, 5 and 10 V on alternating current. Find (i) The power factor of each coil. (ii) Power dissipated in each coil. (iii) Power factor of the whole circuit.	CO3	PO2	08
		UNIT - III			
5	a)	With relevant diagrams explain salient and non-salient pole synchronous generator.	CO1	PO1	06
	b)	With phasor diagrams, derive an expression for phase and line values in a balanced star connected three phase system.	CO2	PO1	08
	c)	Two wattmeter method is used to measure input power to a three-phase load. The load is found to consume total power of 30 kW at 0.7 pf (lagging). What are the readings of the two wattmeters?	CO3	PO2	06
		OR			
6	a)	Derive an expression for EMF of a three-phase synchronous generator.	CO1	PO1	06
	b)	Derive an expression for three phase power using two wattmeter method.	CO2	PO1	06
	c)	The three arms of a 3-phase load each comprise an inductor of resistance of 25 ohms & inductance of 0.15H in series with 120μF capacitor. Supply voltage is 415V, 50Hz. Calculate the line current and total power in watts, when the three arms are connected in delta.	CO3	PO2	08

UNIT - IV					
7	a)	Derive the condition for maximum efficiency of a transformer.	CO1	PO1	06
	b)	With neat diagrams, explain shell type and core type transformers.	CO2	PO1	06
	c)	A single phase 25 kVA 1000/2000V, 50Hz transformer has efficiency of 98% at full load upf and half load 0.8 pf. Determine its efficiency at $\frac{3}{4}$ th of its full load upf	CO3	PO2	08
OR					
8	a)	Derive an emf equation for a transformer.	CO2	PO1	06
	b)	Explain different types of losses occurs in a transformer. How to reduce it?	CO2	PO1	06
	c)	A single phase 25 kVA 1000/2000V, 50Hz transformer has core loss of 450 W and full load copper loss of 850W. Determine its efficiency at a. $\frac{3}{4}$ th of its full load 0.8 pf. b. $\frac{1}{4}$ th of its full load upf.	CO3	PO2	08
UNIT - V					
9	a)	Prove that the frequency of the induced emf in the rotor of an induction motor is slip times its stator supply frequency.	CO1	PO1	06
	b)	A 3 phase, 50 Hz, 6 pole induction motor has a full load percentage slip of 3%. Find: a) Synchronous speed; b) Actual speed of the motor.	CO3	PO2	06
	c)	Define earthing. Explain its necessity. With neat sketch explain plate earthing.	CO4	PO6	08
OR					
10	a)	Explain the concept of rotating magnetic field for a induction motor.	CO3	PO2	10
	b)	Define fuse. With neat diagram explain HRC fuse.	CO4	PO6	10
