

B.M.S. College of Engineering, Bengaluru-560019

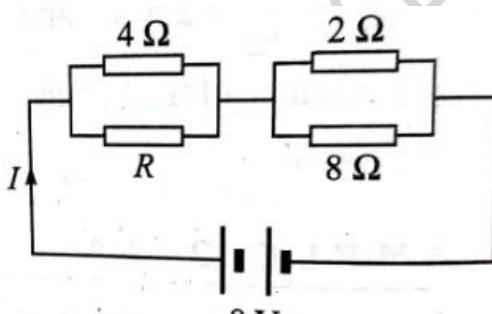
Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Semester: I / II

Branch: Common to all Branches


Duration: 3 hrs.

Course Code: 22EE1ESIEE / 22EE2ESIEE

Max Marks: 100

Course: Introduction to Electrical Engineering

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I		CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Explain the general structure of electrical power system using single line diagram.		CO3	PO6	06
		b)	With a neat block diagram, explain wind power generation.		CO1	PO1	07
		c)	The total power consumed by the network shown in fig.1(c) is 16 W. Find the value of R and the total current.		CO2	PO2	07
			 fig.1(c)				
			UNIT - II				
	2	a)	State and explain super position theorem with suitable circuit.		CO1	PO1	06
		b)	Explain the terms (i) Self-inductance and (ii) Mutual inductance with relevant equations.		CO1	PO1	06
		c)	A circuit has 1000 turns, enclosing a magnetic circuit 20 cm^2 in section. With 4A, the flux density is 1 Wb/m^2 and with 9A, it is 1.4 Wb/m^2 . Find the values of self-inductances in each case and the induced e.m.f if the current falls uniformly from 9A to 4A in 0.05 sec.		CO2	PO2	08
			OR				
	3	a)	For the given circuit shown in Fig. 3(a), find current I using Thevenin's theorem.		CO2	PO2	08

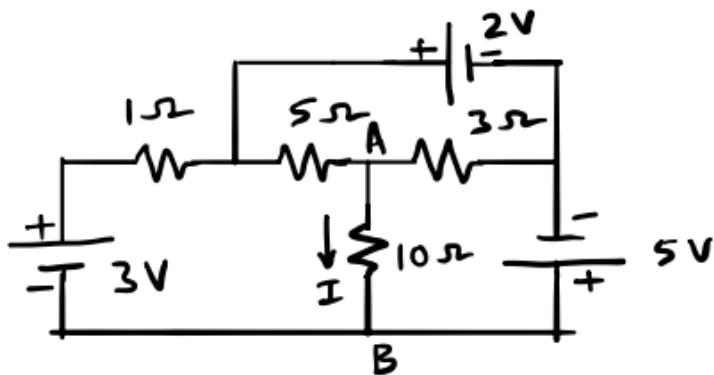


Fig. 3(a)

	b)	State Faraday's Laws of Electromagnetic Induction and explain dynamically induced e.m.f.	CO1	PO1
	c)	Derive an expression for the energy stored in a magnetic field.	CO1	PO1
UNIT - III				
4	a)	Explain the terms (i) RMS value (ii) Average value (iii) Form factor.	CO1	PO1
	b)	Draw and explain with the help of neat circuit diagram and vector diagram showing the component voltages for a series R-L-C circuit under following conditions: (i) $X_C > X_L$ (ii) $X_L > X_C$ (iii) $X_L = X_C$.	CO2	PO2
	c)	Show that, Current leads Voltage by 90° when an AC voltage of $v = v_m \sin \omega t$ Volts is applied across a pure inductor of L Henry. Also represent it using phasor diagram and waveforms.	CO2	PO2
UNIT - IV				
5	a)	With neat sketches explain the constructional details of core type and shell type transformers.	CO1	PO1
	b)	What are the various types of D.C Motors? Give their circuit representation, with expressions.	CO1	PO1
	c)	A 120V, DC shunt motor has an armature resistance of 0.2 ohm and a field resistance of 60 ohms. It runs at 1800 rpm, when it takes a full load current of 40 A. Find the speed of the motor when it is operating with half of its full-load.	CO2	PO2
OR				
6	a)	Derive the emf equation of a single phase transformer referred to primary with usual notations.	CO1	PO1
	b)	Derive the torque equation of DC motor with usual notations.	CO1	PO1
	c)	In a 25 kVA, 2000/200 V, single phase transformer, the iron and full-load copper losses are 350 W and 400 W respectively. Calculate the efficiency at unity power factor on (i) full load (ii) half load	CO2	PO2
UNIT - V				
7	a)	What do you mean by Tariff? Explain the two part tariff.	CO3	PO6
	b)	Explain the working principle of Fuse and Miniature Circuit Breaker (MCB).	CO3	PO6
	c)	With a neat block diagram explain components of Electric Vehicle.	CO3	PO6