

B.M.S. College of Engineering, Bengaluru-560019

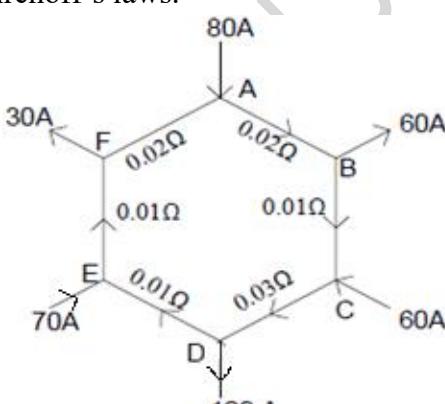
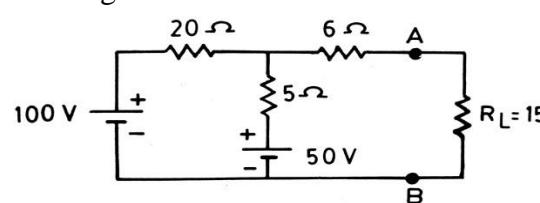
Autonomous Institute Affiliated to VTU

September / October 2023 Semester End Main Examinations

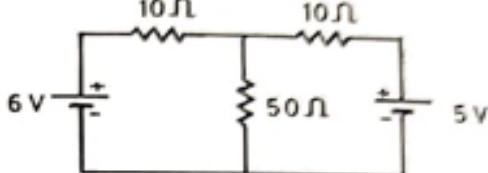
Programme: B.E.

Branch: Electrical and Electronics Engineering

Course Code: 22EE1ESIEE / 22EE2ESIEE



Course: Introduction to Electrical Engineering

Semester: I / II


Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	With a neat schematic diagram explain working of solar power plant.	CO3	PO6	06
	b)	With a neat single line diagram explain general structure of electrical power system.	CO3	PO6	06
	c)	Determine the current in all branches of the network shown in fig.1.c. using Kirchoff's laws.	CO2	PO2	08
 fig.1.c.					
UNIT - II					
2	a)	Arrive at the expression for energy stored in an inductor.	CO1	PO1	06
	b)	Using the principle of superposition theorem, determine the current in 15 Ohms resistor connected between A and B in the circuit shown in Fig. 2.b.	CO2	PO2	07
	c)	 Fig. 2.b.	CO1	PO1	07

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

OR					
3	a)	State and explain superposition theorem with suitable example.	CO1	PO1	07
	b)	Applying the principle of Thevenin's theorem, determine the current through 50Ω resistor for the circuit shown in Fig.3.b.	CO2	PO2	07
		Fig .3.b.			
	c)	Define the following terms : a) Statically induced e.m.f. b) dynamically induced e.m.f. c) Co-efficient of coupling.	CO1	PO1	06
UNIT - III					
4	a)	A series RLC circuit is supplied with an AC voltage at a frequency of f Hz. Derive an expression for the current for the following conditions (i) $X_L = X_C$ (ii) $X_L > X_C$ (iii) $X_L < X_C$	CO2	PO2	07
	b)	Justify that the current in a purely capacitive circuit leads the applied voltage by 90° . Draw relevant waveform and phasor diagram.	CO2	PO2	07
	c)	Define the following: (i) Peak value (ii) RMS value (iii) Form factor.	CO1	PO1	06
UNIT - IV					
5	a)	Arrive at an expression for torque developed by the DC motor.	CO1	PO1	07
	b)	A 200 kVA transformer has an efficiency of 98% at full load. If the maximum efficiency occurs at $3/4$ th of its full load, find its iron loss and full load copper loss. Consider pf of the load as 0.8.	CO2	PO2	08
	c)	Explain DC shunt motor with suitable circuit and expressions. Also mention its applications.	CO1	PO1	05
OR					
6	a)	Derive an e.m.f equation of a transformer.	CO1	PO1	07
	b)	A 500V DC shunt motor has 4 poles and wave connected winding with 492 conductors. The total flux is 0.2wb. Full load line current is 20A. The armature and shunt field resistances are 0.1Ω and 250Ω respectively. Calculate the speed of the motor and gross torque developed by the armature.	CO2	PO2	08
	c)	Explain the types of losses that occur in a transformer.	CO1	PO1	05
UNIT - V					
7	a)	With a neat block diagram explain different parts of an electric vehicles.	CO3	PO6	08
	b)	What is earthing? With a neat diagram explain pipe earthing.	CO3	PO6	08
	c)	Differentiate between Fuse and MCB.	CO3	PO6	04