

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September 2024 Supplementary Examinations

Programme: B.E.

Branch: Common to all Branches

Course Code: 22EE1ESIEE / 22EE2ESIEE

Course: Introduction to Electrical Engineering

Semester: I / II

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			<i>CO</i>	<i>PO</i>	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Applying Kirchhoff's laws to different loops in Fig. 1.a, find the values of V_1 and V_2 .	<i>CO2</i>	<i>PO2</i>	06
			Fig. 1.a			
		b)	With a neat single-line diagram, explain the general structure of electrical power system.	<i>CO3</i>	<i>PO6</i>	07
		c)	Explain Hydel power plant with a neat block diagram.	<i>CO1</i>	<i>PO1</i>	07
UNIT - II						
	2	a)	Define the following: i. Faraday's Laws of Electromagnetic induction. ii. Lenz's Law.	<i>CO1</i>	<i>PO1</i>	05
		b)	Two coils, coil A of 12,500 turns and coil B of 16,000 turns, lie in parallel planes so that 60% of flux produced in coil A links coil B. It is found that a current of 5A in coil A produces a flux of 0.6 mWb while the same current in coil B produces 0.8 mWb. Determine (i) mutual inductance and (ii) coupling coefficient.	<i>CO2</i>	<i>PO2</i>	06

	c)	<p>For given circuit shown in Fig 2.(c), Determine the current through the resistor $R=0.5 \Omega$ using superposition theorem.</p> <p>Fig 2.(c)</p>	CO2	PO2	09
		OR			
3	a)	Define and derive the equations for self-inductance and mutual inductance. Arrive at an expression for coefficient of coupling.	CO1	PO1	10
	b)	For given circuit shown in Fig 3.(b), Find the voltage across 5Ω resistor using Thevenin's theorem.	CO2	PO2	10
		<p>Fig 3.(b)</p>			
		UNIT - III			
4	a)	Show that current through the pure capacitor is leading by an angle $\pi/2$ radian w.r.t. the voltage across it. Sketch the waveforms of voltage and current.	CO1	PO1	06
	b)	<p>A series RLC circuit is supplied with an AC voltage of 'V' Volts at a frequency of 'f' Hz. Derive an expression for the current in the circuit for the following conditions:</p> <p>(i) $X_L = X_C$ (ii) $X_L > X_C$ (iii) $X_L < X_C$</p> <p>Draw the vector diagram indicating voltage across different elements in the circuit.</p>	CO2	PO2	09
	c)	<p>Define the following:</p> <ul style="list-style-type: none"> (i) RMS value. (ii) Form factor. (iii) Average value. (iv) Crest factor. (v) Phase angle. 	CO1	PO1	05
		UNIT - IV			
5	a)	In what way does the core type transformer differ from the shell type? With figures compare the two.	CO1	PO1	06
	b)	Arrive at the expression for Back EMF of a DC Motor.	CO1	PO1	06

	c)	A 25 kVA, 2000/200 V transformer has Iron and full load copper losses of 350 Watts and 400 Watts respectively. Calculate the efficiency at i. half of its full load upf. ii. 3/4th of its full load upf.	CO2	PO2	08
		OR			
6	a)	Explain the types of DC Motor with relevant circuit diagram and equations.	CO1	PO1	06
	b)	Derive the condition for which the efficiency of transformer is maximum.	CO1	PO1	06
	c)	A 4 pole, 220 V. lap connected DC shunt motor has 36 slots, each slot containing 16 conductors. It draws a current of 40 A from the supply. The field resistance and armature resistances are 110Ω and 0.1Ω respectively. The motor develops an output power of 6 kW. The flux per pole is 40 mwb. Calculate i) the speed ii) the torque developed by the armature and iii) the shaft torque.	CO2	PO2	08
		UNIT - V			
7	a)	Compare MCB and fuse.	CO3	PO6	05
	b)	With the help of detailed block diagram, explain the working of Battery operated Electric Vehicle.	CO3	PO6	07
	c)	Define earthing. Why earthing is necessary? Explain any one type of earthing with a neat diagram.	CO3	PO6	08
