

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

December 2023 Supplementary Examinations

Programme: B.E.

Semester: I / II

Branch: Common to all Branches

Duration: 3 hrs.

Course Code: 22EE1ESRES / 22EE2ESRES

Max Marks: 100

Course: Renewable Energy Sources

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
1	a)	List the benefits and drawbacks of renewable energy sources. (Four each).				<i>CO1</i>	<i>PO7</i>	04
	b)	Explain the process of converting solar energy into electrical energy using a clear and organized block diagram.				<i>CO2</i>	<i>PO2</i>	08
	c)	With the help of a well-structured block diagram elucidate the transformation of wind energy into electrical energy.				<i>CO3</i>	<i>PO1</i>	08
			UNIT - II					
2	a)	With a schematic diagram, define the following terms (i) beam radiation (ii) diffuse radiation (iii) scattering of the incident radiation, (iv) zenith angle (v) angle of incidence and (vi) surface azimuth angle				<i>CO2</i>	<i>PO2</i>	10
	b)	With a neat sketch explain the construction and working principle of solar PV cell with its I-V characteristics				<i>CO2</i>	<i>PO2</i>	10
			OR					
3	a)	Describe the construction and operational principles of an instrument designed to measure beam radiation and outline its various applications.				<i>CO2</i>	<i>PO2</i>	10
	b)	With a neat sketch explain the construction and working of (i) concentrating type and (ii) non-concentrating type solar collector				<i>CO2</i>	<i>PO2</i>	10
			UNIT - III					
4	a)	How are wind turbines classified? Illustrate the construction and operation of a single-blade horizontal-axis wind turbine with a neat sketch.				<i>CO3</i>	<i>PO1</i>	10
	b)	With a neat sketch, describe the operation of a vertical axis wind turbine of the Savonius type.				<i>CO3</i>	<i>PO1</i>	10
			OR					

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	5	a)	Elucidate the construction and working of a vertical axis wind turbine of the Darrieus type, accompanied by an illustrative diagram.	CO3	PO1	10
		b)	Obtain the expression that determines the optimal condition for extracting the maximum power from the total available wind energy by a wind turbine.	CO3	PO1	10
UNIT - IV						
	6	a)	With appropriate sketch, describe the three methods of generation of power that can be achieved in single basin arrangement.	CO3	PO1	10
		b)	With a neat schematic explain the construction and working of closed cycle ocean thermal energy conversion system.	CO3	PO1	10
UNIT - V						
	7	a)	With a neat schematic explain the construction and working of fixed dome biogas plant	CO3	PO1	10
		b)	How fuel cells are classified? With a neat sketch and relevant reactions explain the working of Phosphoric Acid Fuel Cell (PAFC).	CO3	PO1	10
