

B.M.S. College of Engineering, Bengaluru-560019

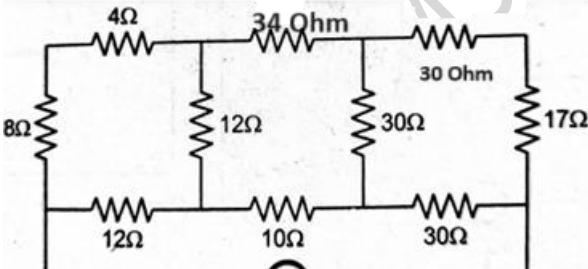
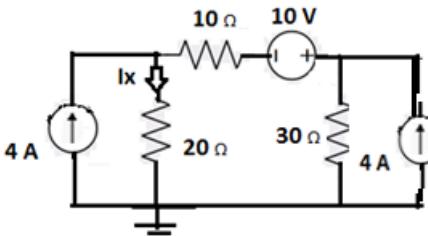
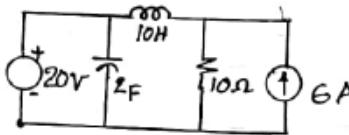
Autonomous Institute Affiliated to VTU

August 2024 Semester End Main Examinations

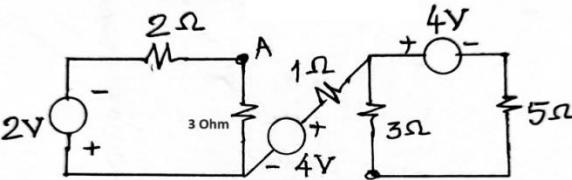
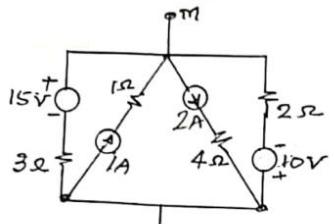
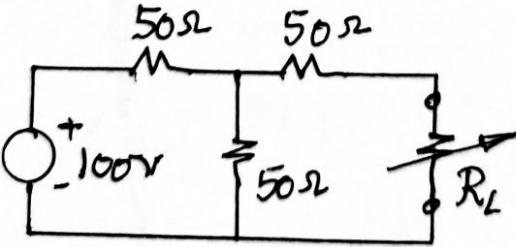
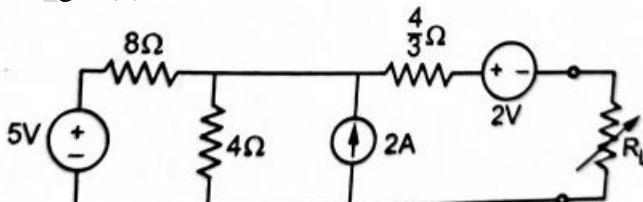
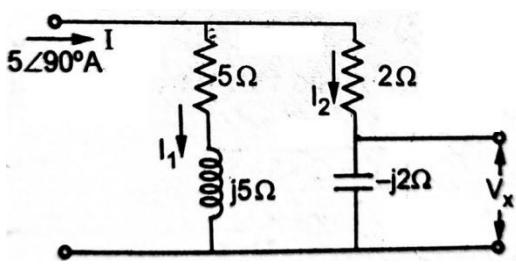
Programme: B.E.

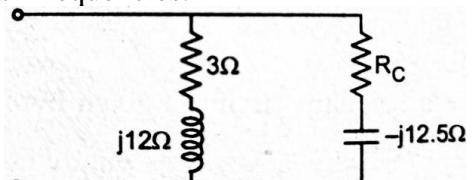
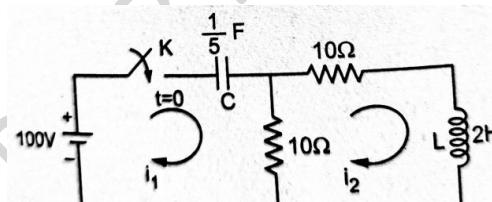
Branch: Electrical and Electronics Engineering

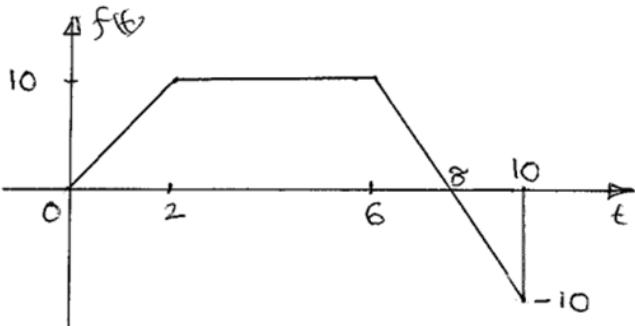
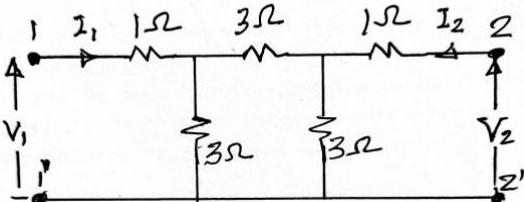
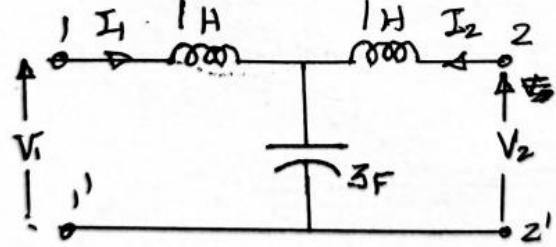
Course Code: 22EE3PCECT




Course: Electrical Circuit Theory

Semester: III






Duration: 3 hrs.



Max Marks: 100




Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Differentiate between: (i) Active and passive networks, (ii) Ideal and practical sources, (iii) Linear and bilateral elements.	CO1	PO1	06
	b)	Using star-delta transformations find the current through the 10 Ohm resistor in the circuit shown in Fig. 1(b).	CO1	PO1, 2	07
		<p>Fig.1(b)</p>			
	c)	In the circuit shown in Fig.1(c) find the current I_x by Node voltage analysis.	CO1	PO1, 2	07
		<p>Fig.1(c)</p>			
OR					
2	a)	What do you mean by duality? Construct the dual of the circuit shown in Fig.2(a) by dot method.	CO1	PO1, 2	06
		<p>Fig.2(a)</p>			

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	<p>In the circuit shown in Fig.2(b), find the potential difference across the points A and B.</p> <p>Fig.2(b)</p>	CO1	PO1, 2	08
	c)	<p>Determine the potential difference between the terminals M-N in the circuit shown in Fig.2(c) using source transformations.</p> <p>Fig.2(c)</p>	CO1	PO1, 2	06
UNIT - II					
3	a)	<p>State Thevenin's theorem and obtain the Thevenin's equivalent of the circuit shown in Fig.3(a)</p> <p>Fig.3(a)</p>	CO2	PO1, 2	07
	b)	<p>State the maximum power transfer theorem for the case of totally variable impedance, and find the value of R_L for maximum power transfer through it and also find the maximum power in the circuit shown in Fig. 3(b)</p> <p>Fig.3(b)</p>	CO2	PO1, 2	07
	c)	<p>State and verify Reciprocity theorem for the circuit shown in Fig. 3(c).</p> <p>Fig.3(c)</p>	CO2	PO1, 2	06

UNIT-III					
4	a)	Define what are initial conditions and what is its importance in networks?	CO3	PO1, 2	04
	b)	Calculate the value of R_C for the circuit shown in Fig.4 (b) for resonance. Also determine the value of R_L and R_C for the circuit to resonate at all frequencies.	CO3	PO1, 2	08
		Fig.4(b)			
	c)	A series R-L-C circuit having $R = 10$ Ohm, $L = 1$ H and $C = 1$ micro farad is connected to a source of 10 V through a switch. The switch is closed at $t=0$, all the initial conditions are zero. Calculate the values of i , Di and D^2i at $t=0+$	CO2	PO1, 2	08
		OR			
5	a)	Define the following: (i) Band width, (ii) Quality factor, (iii) Half power frequencies.	CO3	PO1	06
	b)	A series resonant circuit having $R = 30$ Ohm, $C = 2$ micro farad and $L=20$ mH are connected across a sinusoidal supply of constant voltage of 9 V. Calculate: (i) the resonant frequency, (ii) current at resonance, (iii) Quality factor.	CO3	PO1, 2	06
	c)	In the circuit shown in Fig. 5(c), the switch K is closed at time $t = 0$ with all zero initial conditions. Find: (i) i_1 , (ii) i_2 , (iii) Di_1 and (iv) DI_2 at $t=0+$	CO3	PO1, 2	08
		Fig. 5(c)			
		OR			
UNIT - IV					
6	a)	What is an impulse function and show that the Laplace transformations of a unit impulse function is unity.	CO4	PO1	04
	b)	In the circuit shown in Fig. 6(b), find the transformed current through the 1 H [$I_2(s)$] of the second loop using Laplace transformations considering all the initial conditions to be zero.	CO4	PO1, 2	08
		Fig.6(b)			

	c)	<p>Find the Laplace transformation of the waveform shown in Fig.6(c).</p>	CO4	PO1, 2	08
		UNIT - V			
7	a)	Define Z and T-parameters and write the relation between Z and T-parameters.	CO5	PO1	06
	b)	Determine the y-parameters of the network shown in Fig.7(b).	CO5	PO1, 2	08
	c)	Determine the Z - parameters of the network shown in Fig.7c.	CO5	PO1, 2	06
