

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

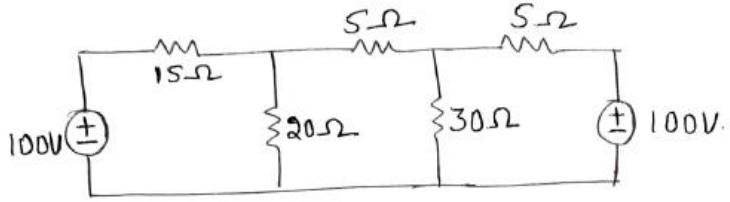
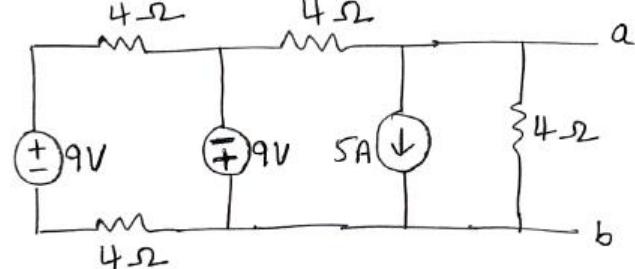
Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

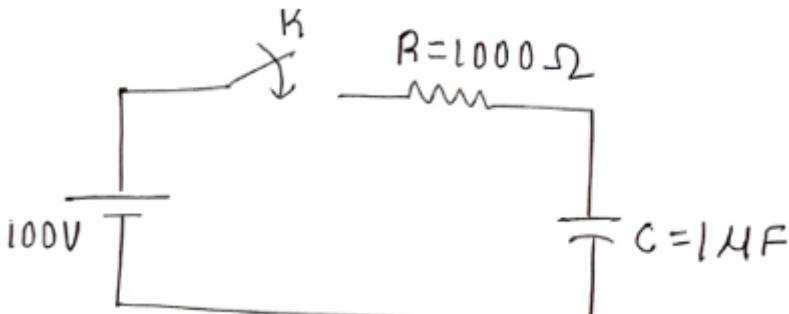
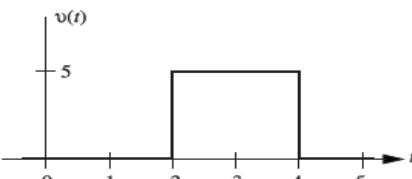
Branch: Electrical and Electronics Engineering

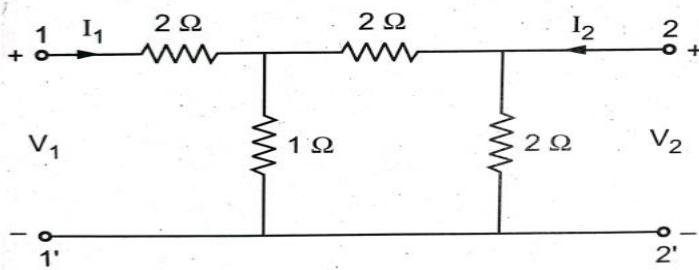
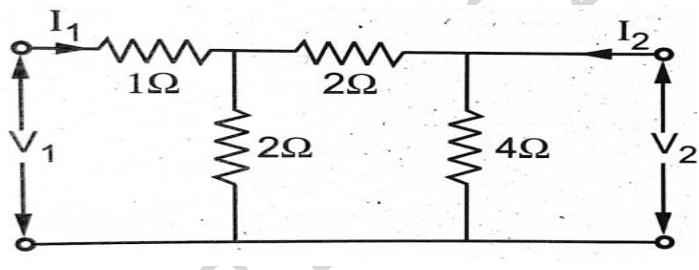
Course Code: 22EE3PCECT



Course: Electrical Circuit Theory

Semester: III

Duration: 3 hrs.



Max Marks: 100



Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			<i>CO</i>	<i>PO</i>	Marks
1	a)	Briefly explain the classifications of electrical networks.	<i>CO1</i>	<i>PO1</i>	10
	b)	Determine current through 30Ω resistor using mesh analysis.	<i>CO1</i>	<i>PO1</i>	06
		 <i>Fig Q1(b)</i>			
	c)	Explain the Super-node analysis.	<i>CO1</i>	<i>PO1</i>	04
OR					
2	a)	Explain the following (i)Delta-Star conversion (ii)Star-Delta conversion	<i>CO1</i>	<i>PO1</i>	10
	b)	Use source transformation to convert the circuit to a single current source in parallel with a single resistor shown in Fig 2 (b).	<i>CO1</i>	<i>PO1</i>	06
		 <i>Fig Q2(b)</i>			
	c)	Discuss independent sources.	<i>CO1</i>	<i>PO1</i>	04

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

OR					
6.	a)	Obtain an expression for resonant frequency in an series RLC circuit.	CO3	PO2	10
	b)	For the given circuit shown in Fig. k is closed at $t > 0$. Calculate i , $di/dt, d^2i/dt^2$ at $t = 0^+$.	CO3	PO2	07
	c)	A coil of 5mH inductance and 10Ω resistance is connected in series with $5\mu\text{F}$. Determine the frequency at which circuit resonance.	CO3	PO2	03
UNIT – IV					
7.	a)	State and prove initial and final value theorem.	CO4	PO2	10
	b)	Obtain the Laplace transform of (i)Unit step function (ii)Impulse function (iii)Sinusoidal function	CO4	PO2	10
OR					
8.	a)	State and prove initial value and final value theorem.	CO4	PO2	10
	b)	Express the voltage pulse shown in Fig. in terms of unit step function and then find $V(s)$ also determine $L\{dv(t)/dt\}$	CO4	PO2	10
UNIT – V					
9.	a)	Obtain the Z-parameters in terms of Y-parameters.	CO4	PO3	10

	b)	Find Z and h-parameters given in Fig.	CO4	PO3	10
		OR			
10.	a)	Determine the Z-parameters for the circuit shown in the Fig.	CO4	PO3	10
	b)	Obtain the h-parameters of the network shown in Fig. Give its equivalent circuit.	CO4	PO3	10
