

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

Branch: Electrical and Electronics Engineering

Course Code: 22EE3PCECT

Course: Electrical Circuit Theory

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	For the network shown in the Figure Consists of two star connected circuits in parallel. Obtain the single delta connected equivalent.	CO1	PO2	10
OR					
2	a)	Write the mesh equation for the circuit shown in Figure and determine mesh currents using mesh analysis.	CO1	PO1	10
2	a)	Use the nodal analysis to calculate the value of V_x in the circuit shown in the Fig. such that the current through $(2 + j3) \Omega$ impedance is zero.	CO1	PO2	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Reduce the network shown in the Fig. to a single voltage source in series with a resistance using source shifing and source transformations.	CO1	PO1	10
UNIT - II					
3	a)	State and prove Norton's Theorem.	CO2	PO2	10
	b)	Determine the voltage 'V' across $3\ \Omega$ resistor using Superposition Theorem for the circuit given in the Figure.	CO2	PO2	10
UNIT - III					
4	a)	A series RLC circuit consists of $R = 10\ \Omega$, $L = 0.01\text{ H}$, and $C = 0.01\mu\text{F}$, is connected across a supply of 10 mV . Determine, i) f_0 ii) Q-factor iii) BW iv) f_1 and f_2 v) I_0	CO3	PO2	10
	b)	In the circuit shown in the Fig. initially switch is kept open for long time. At $t = 0$, Switch K is closed. Obtain expression for current in the circuit for $t > 0$. Find the value of current at $t = 0.25\text{ sec}$. what will be the current in circuit in one time constant period? Determine the instant of time at which the current in the circuit reaches to 1.2 A	CO3	PO2	10
OR					
5	a)	What is significance of initial conditions? Write a note on initial conditions in basic circuit elements.	CO3	PO2	10

	b)	<p>The switch is moved from position 1 to 2 at $t=0$. Obtain the voltages $V_R(t)$ and $V_c(t)$ for $t \geq 0$</p>	CO3	PO2	10
UNIT - IV					
6	a)	Determine the Laplace transform of,	CO4	PO2	08
	b)	Explain Laplace transform of unit Step and Unit Ramp functions.	CO4	PO2	05
	c)	State and explain Initial value and Final value theorem.	CO4	PO2	07
UNIT - V					
7	a)	Determine the z-parameters for the circuit shown in the Fig.	CO5	PO5	10
	b)		CO5	PO5	10
	b)	Obtain the h-parameters of the network shown in Fig. Give its equivalent circuit.	CO5	PO5	10
