

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2023 Semester End Make-Up Examinations

Programme: B.E.

Branch: Electrical & Electronics Engineering

Course Code: 22EE3PCECT

Course: ELECTRICAL CIRCUIT THEORY

Semester: III

Duration: 3 hrs.

Max Marks: 100

Date: 10.08.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1 a) Convert the network shown in **Fig. 1a** into a single voltage source in series with **10** resistance using source transformation and source conversion technique.

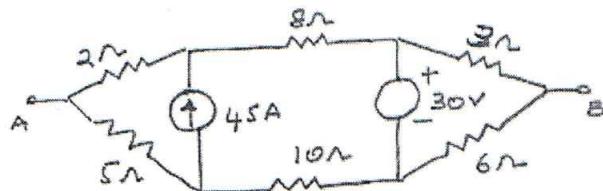
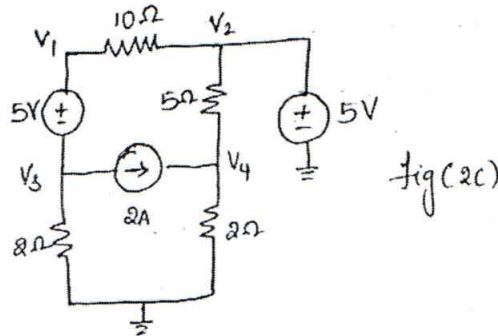



Fig. 1a

b) For the network shown in fig(2c) determine the node voltages V_1 , V_2 , V_3 and **10** V_4 using nodal analysis.

OR

2 a) In the circuit shown in the **Fig. 2a**, determine V_2 , which results in zero current through the 4Ω resistor. Use mesh analysis **10**

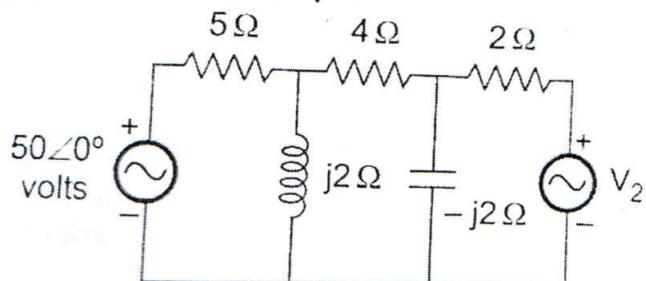


Fig. 2a

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

b) Determine the equivalent resistance across the terminals a-b using star delta transformation for Fig. 2b 10

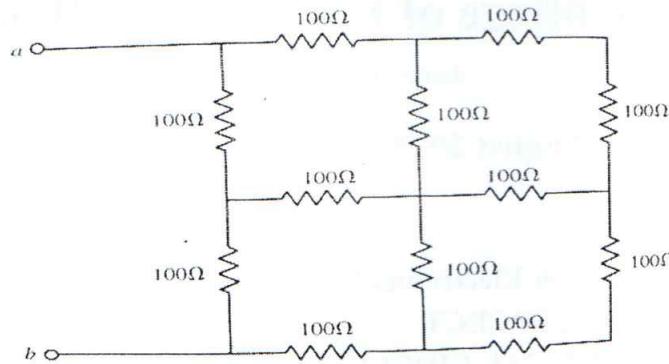


Fig. 2b

UNIT - II

3 a) Determine the current in 2Ω resistor for the Fig. 3a using superposition theorem. 06

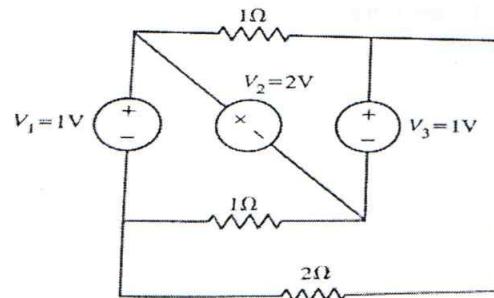


Fig. 3a

b) In the single current source circuit shown in Fig. 3.b. Calculate the voltage V_x Interchange the current source and the resulting voltage 'V_x' Is the reciprocity theorem verified? 06

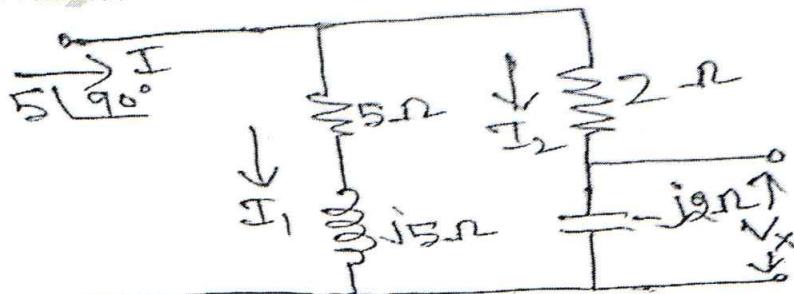


Fig. 3b

c) Define Superposition theorem, Reciprocity theorem, Millman's theorem and Thevenin's theorem 08

UNIT - III

4 a) A series RC branch with $R = 20\Omega$ and $C = 1\mu F$ is shunted by an inductor of resistance 20Ω and inductance $1H$. This is supplied by a DC source of $100V$ through a series resistance of 10Ω . There is a switch across 10Ω which is closed at $t=0$. Solve for the currents in L and C and their derivatives at $t=0^+$. 10

b) Prove that the resonating frequency in a series RLC circuit is geometric mean of half power frequencies i.e $f_0 = \sqrt{f_1 f_2}$ 10

OR

5. a) What is the significance of initial conditions? Write a note on initial and final conditions for basic circuit elements 07

b) Derive an expression for Q factor of series resonant circuit. 08

c) A series RLC circuit has $R = 10\Omega$, $L = 0.1H$ and $C = 100\mu F$ and is connected across 200V variable frequency source. Find i) resonant frequency, ii) impedance at this frequency, iii) voltage across inductor and capacitor at this frequency, iv) quality factor, v) bandwidth 05

UNIT - IV

6. a) State and prove initial and final value theorem 08

b) Find the initial value of $F(S) = \frac{s+1}{(s+1)^2+9}$ 02

c) Synthesize the waveform shown in the Fig. 6.c in terms of gate functions 10

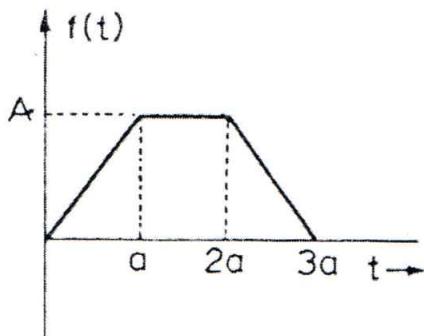


Fig. 6.c

UNIT - V

7. a) Express 'Z' parameters in terms of 'Y' parameters and what are 'T' parameters? 10

b) Determine 'Y' parameter of the network shown in Fig. 7. b. 10

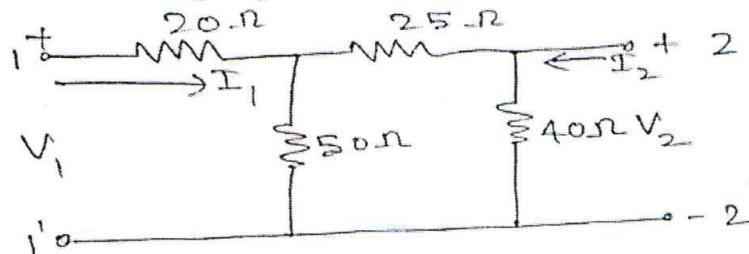


Fig. 7b
