

B. M. S. College of Engineering, Bengaluru - 560019

Autonomous Institute Affiliated to VTU

May 2023 Semester End Main Examinations

Programme: B.E.

Branch: Electrical and Electronics Engineering

Course Code: 19EE3PCEEM

Course: Electrical and Electronic Measurements

Semester: III

Duration: 3 hrs.

Max Marks: 100

Date: 19.05.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.

UNIT - I

1. a) With the help of circuit diagram and phasor diagram, derive the bridge balance condition for the measurement of resistance, capacitance, loss factor of a capacitor using Schering bridge circuit. **08**
- b) Derive the expression for bridge sensitivity of a wheatstone bridge network with unequal ratio arms. **06**
- c) A resistor of $50\mu\Omega$ was measured by Kelvin's double bridge having following component resistors. Standard resistance: $100.03\mu\Omega$, Inner ratio arms: 100.31Ω and 200Ω Outer ratio arms: 100.24Ω and 200Ω , connecting resistance between four terminal resistor is $700\mu\Omega$. Calculate the unknown resistance. **06**

OR

2. a) With the help of circuit diagram and phasor diagram, derive the bridge balance condition for the measurement of resistance, inductance and quality factor of a coil using Maxwell Wien bridge. **08**
- b) List the errors in ac bridges and method of minimizing the ac bridge errors. **06**
- c) A sheet of bakelite is tested at 50 Hz between the circular electrodes. The Schering bridge employs a standard air capacitor C_4 ,a non reactive resistance R_3 of $(1000/\pi)\Omega$ in parallel with a capacitor $C_3=0.5\mu F$ and a nonreactive variable resistance of R_3 . Balance is obtained when $R_2=260\Omega$.Compute the loss factor, power factor and quality factor of the bakelite sheet. **06**

UNIT - II

3. a) With the help of neat diagram and phasor diagrams, explain the construction and operation of single phase dynamometer type power factor. **07**
- b) With the help of block diagram, explain the working of Electronic energy meter. **06**
- c) An electrodynamic wattmeter is used to measure the power in a 1Ω load. The load voltage is 230V and the load current is 10A at a lagging power factor of 0.1.The wattmeter voltage circuit has a resistance of 10000Ω & **07**

inductance 0.1H and it is connected directly across the load. Estimate the error in the wattmeter reading at 50 Hz frequency.

UNIT - III

4. a) With the help of equivalent circuit and phasor diagram, derive the expression for ratio error phase angle of a current transformer. **09**

b) Explain the method of turns compensation used in current transformers to reduce ratio error. **05**

c) A dc potentiometer has a 15 step dial switch where each step represents 0.1V . The dial resistors are 10Ω each. The slide wire of the potentiometer is circular and has resistance of 10Ω . The slide wire has 100 divisions and interpolation can be done to one-fourth of a division. The working battery has a voltage of 2V with negligible internal resistance. Compute (i) the measuring range of the potentiometer (ii) working current (iii) Resolution (iv) Setting of rheostat. **06**

OR

5. a) With the help of circuit diagram, explain the standardization procedure and how unknown resistance is measured using Crompton dc potentiometer. **07**

b) With the help of circuit diagram, explain how load power is measured using dc potentiometer. **06**

c) A $100/5\text{A}$ current transformer at its rated burden of 20VA has an core loss of 0.18W and a magnetizing current of 1.4A . It is supplying rated output to a meter having a ratio of reactance to resistance of 0.25 . Compute the ratio error and phase angle of current transformer. **07**

UNIT - IV

6. a) With the help of a neat block diagram and timing diagram, explain the operation of digital voltmeter is working on voltage to time conversion principle. **07**

b) With the help of a neat block diagram, explain the working of digital storage oscilloscope. Mention its four specific advantages. **08**

c) List the advantages of digital voltmeters over conventional analog voltmeters. **05**

UNIT - V

7. a) Explain the construction and working of linear variable differential transformer with neat diagram. Sketch the output voltage versus core displacement characteristic. **08**

b) A Strain gauge is bonded to a beam 10cm long and has a cross sectional area of 2 cm^2 . The modulus of elasticity of steel is 200GN/m^2 . The strain gauge has a unstrained resistance of 200Ω and a gauge factor of 2. When load is applied, the resistance of gauge changes by 0.2Ω . Calculate the change in length of the beam and the amount of force applied to the beam. **06**

c) Differentiate between thermistor and resistance temperature detector. **06**
