

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

Branch: Electrical and Electronics Engineering

Course Code: 22EE3PCEEM

Course: Electrical and Electronic Measurements

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			
			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Describe the sources and the null detectors that are used for a.c. bridges.	CO1	PO1	06
		b)	The arms of a five node bridge are as follows: Arm AB consists of an unknown impedance (R_1, L_1) in series with a non-inductive variable resistor r_1 . Arm BC a non –inductive resistor $R_3 = 100\Omega$, Arm CD: a non –inductive resistor $R_4 = 200\Omega$, Arm DA: a non-inductive resistor $R_2=250\Omega$, Arm DE a non –inductive variable resistor r , Arm EC- a loss-less capacitor $C=1\mu F$, and Arm BE: a detector. An a.c supply is connected between a and c. Draw the bridge circuit and determine the values of R_1, L_1 when under balance conditions $r_1=43.1 \Omega$ and $r=229.7 \Omega$	CO3	PO2	06
		c)	With a neat circuit diagram arrive at the balance condition of kelvin's double bridge.	CO2	PO2	08
OR						
	2	a)	Derive the equations for balance in case of Hay's bridge. Draw the phasor diagram for balance condition.	CO2	PO2	08
		b)	A Wheatstone's bridge circuit arrangement is as follows : ratio arms: 100Ω and 10Ω , standard resistance 4Ω and the test resistance 50Ω . Determine the unbalanced current in the galvanometer of the internal resistance 20Ω , when the supply voltage is 10 volts. Also determine the value of unknown resistance corresponding to the null reading by galvanometer.	CO3	PO2	08
		c)	Enumerate the limitations of Wheatstone bridge.	CO2	PO1	04
UNIT - II						
3	a)	With the help of a block diagram explain the operation of electronic energy meter.	CO2	PO1	07	

	b)	A wattmeter has a current coil of resistance 0.03Ω and a pressure coil of resistance 6000Ω is connected to measure the power consumed by a load. Determine the percentage error in the reading of the wattmeter when the load takes 20 A at 220 V with 0.6 power factor, when (i) the pressure coil is connected on the load side and (ii) When the current coil is connected on the load side.	CO3	PO2	07
	c)	With the help of a neat diagram explain the working of dynamometer type wattmeter.	CO2	PO1	06
		UNIT - III			
4	a)	A Current transformer with a bar primary has 300 turns in its secondary winding. The resistance and reactance of the secondary circuit are 1.5Ω and 1.0Ω respectively including the transformer winding. With 5A flowing in the secondary winding, the magnetizing mmf is 100A and iron loss is 1.2W. Determine the ratio error.	CO3	PO2	08
	b)	Draw the equivalent circuit and phasor diagram of a current transformer and derive the expression for phase angle error.	CO2	PO2	08
	c)	Describe how a DC potentiometer can be used for Measurement of power	CO2	PO1	04
		OR			
5	a)	Define the following terms as used for current transformers. a. Ratio correction Factor b. Nominal ratio	CO1	PO1	04
	b)	A 100/5A 50Hz current transformer has a bar primary and a rated secondary burden of 12.5VA. The secondary winding has 196 turns and a leakage inductance of 0.96 mH. With a purely resistive burden at rated full load, the magnetization mmf is 16 A and the loss excitation requires 12A. Determine the ratio and phase angle errors.	CO3	PO2	08
	c)	Explain the term "Standardization" of a potentiometer. Also explain the operation of Crompton's DC Potentiometer.	CO2	PO1	08
		UNIT - IV			
6	a)	With a neat block diagram explain the working of a Digital multimeter.	CO2	PO1	07
	b)	A $4^{1/2}$ digit voltmeter is used for voltage measurements. i) Determine its resolution ii) How would 12.98 V be displayed on a 10V range iii) How would 0.6973 be displayed on 1V and 10V ranges.	CO3	PO2	05
	c)	With a neat block diagram explain the working of digital storage oscilloscope.	CO2	PO1	08

UNIT - V					
7	a)	Prove that gauge factor of strain gauge is given by $G_f = 1+2u$, where u is poisson's ratio	<i>CO2</i>	<i>PO2</i>	08
	b)	With necessary diagram explain the construction and working of LVDT	<i>CO2</i>	<i>PO1</i>	07
	c)	Explain the working principle of a Thermocouple	<i>CO2</i>	<i>PO1</i>	05

B.M.S.C.E. - ODD SEM 2023-24