

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Electrical and Electronics Engineering

Duration: 3 hrs.

Course Code: 22EE3PCEEM

Max Marks: 100

Course: Electrical and Electronic Measurements

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Describe the sources and the null detectors that are used for a.c. bridges.	CO1	PO1	06
	b)	The arms of a five node bridge are as follows: Arm AB consists of an unknown impedance (R_1, L_1) in series with a non-inductive variable resistor r_1 . Arm BC a non -inductive resistor $R_3 = 100\Omega$, Arm CD: a non -inductive resistor $R_4 = 200\Omega$, Arm DA: a non-inductive resistor $R_2 = 250\Omega$, Arm DE a non -inductive variable resistor r , Arm EC- a loss-less capacitor $C = 1\mu F$, and Arm BE: a detector. An a.c supply is connected between a and c. Draw the bridge circuit and determine the values of R_1, L_1 when under balance conditions $r_1 = 43.1 \Omega$ and $r = 229.7 \Omega$	CO3	PO2	06
	c)	With a neat circuit diagram arrive at the balance condition of kelvin's double bridge.	CO2	PO2	08
OR					
2	a)	Derive the equations for balance in case of Hay's bridge. Draw the phasor diagram for balance condition.	CO2	PO2	08
	b)	A Wheatstone's bridge circuit arrangement is as follows: ratio arms: 100Ω and 10Ω , standard resistance 4Ω and the test resistance 50Ω . Determine the unbalanced current in the galvanometer of the internal resistance 20Ω , when the supply voltage is 10 volts. Also determine the value of unknown resistance corresponding to the null reading by galvanometer.	CO3	PO2	08
	c)	Enumerate the limitations of Wheatstone bridge.	CO2	PO1	04

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		burden at rated full load, the magnetization mmf is 16 A and the loss excitation requires 12A. Determine the ratio and phase angle errors.			
	c)	Explain the term “Standardization” of a potentiometer. Also explain the operation of Crompton’s DC Potentiometer.	CO2	PO1	08
UNIT - IV					
7	a)	With a neat block diagram explain the working of a Digital multimeter.	CO2	PO1	07
	b)	A 4 ^{1/2} digit voltmeter is used for voltage measurements. i) Determine its resolution ii) How would 12.98 V be displayed on a 10V range How would 0.6973 be displayed on 1V and 10V ranges.	CO3	PO2	05
	c)	With a neat block diagram explain the working of digital storage oscilloscope.	CO2	PO1	08
OR					
8	a)	Explain the advantages of digital instruments over analog instruments	CO2	PO1	06
	b)	With a neat block diagram explain the working of Ramp type DVM	CO2	PO1	07
	c)	Explain the operation of LCR Meter.	CO2	PO1	07
UNIT - V					
9	a)	Prove that gauge factor of strain gauge is given by $G_f = 1+2u$, where u is poisson’s ratio	CO2	PO2	08
	b)	With necessary diagram explain the construction and working of LVDT	CO2	PO1	07
	c)	Explain the working principle of a Thermocouple	CO2	PO1	05
OR					
10	a)	What are transducers? Discuss the classification of transducers	CO2	PO1	07
	b)	With a neat diagram explain the operation of Hall Effect transducer.	CO2	PO1	07
	c)	Explain the construction and working of Piezo Electric transducer.	CO2	PO1	06
