

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Electrical and Electronics Engineering

Duration: 3 hrs.

Course Code: 22EE3PCEEM

Max Marks: 100

Course: Electrical and Electronic Measurements

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Derive the equations for balance in case of Maxwell's Inductance capacitance bridge. Draw the phasor diagram for balance condition.	CO2	PO2	07
	b)	A condenser forms the arm AB of Schering bridge and a standard capacitance of $500 \times 10^{-12} \text{F}$ form arm AD. The arm BC consists of resistance of 300Ω . When the bridge is balanced, the arm CD has resistance of 72.6Ω in parallel with a capacitor of $0.148\mu\text{F}$. A detector is connected in the arm BD. The supply of frequency 50Hz is connected across A and B. Determine the capacitance, dielectric loss of the capacitor in arm AB.	CO3	PO2	07
	c)	Describe the various factors that causes errors in AC bridges measurements and suggest the method of minimization for the same.	CO2	PO1	06
OR					
2	a)	Derive the expression for the current through the galvanometer and bridge sensitivity S_B in case of unbalanced Wheatstone bridge.	CO2	PO2	07
	b)	A Maxwell's LC bridge is used to measure an inductive impedance. The bridge constants at balance are $C_1=1\mu\text{F}$ in parallel with $R_1=500 \text{ k}\Omega$, $R_2=5 \text{ k}\Omega$ and $R_3 = 1 \text{ k}\Omega$. Compute the series equivalent of the unknown impedance and quality factor of the coil, when the source frequency is 1Hz	CO3	PO2	06
	c)	Derive the equations for balance in case of modified desauty's bridge. Draw the phasor diagram for balance condition.	CO2	PO2	07

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		at full load. Neglect leakage reactance and assume iron loss in the core to be 1.5W at full load. The magnetizing mmF is 100A.			
	c)	Summarize the use of instrument transformer for range extension	CO2	PO1	04
		UNIT - IV			
7	a)	Enumerate the advantages of digital instruments over analog instruments.	CO2	PO1	05
	b)	With a neat block diagram explain the working of digital storage oscilloscope.	CO2	PO1	08
	c)	Explain the working of Ramp type DVM using necessary block diagram.	CO2	PO1	07
		OR			
8	a)	Define Sensitivity and Resolution w.r.t to digital instruments	CO1	PO1	04
	b)	With a neat block diagram explain the construction and working of LCR Meter	CO2	PO1	08
	c)	Explain the operation of Digital Multimeter with a neat diagram.	CO2	PO1	08
		UNIT - V			
9	a)	Explain the factors to be considered while selecting a transducer.	CO2	PO1	07
	b)	With necessary diagram explain the construction and working of LVDT	CO2	PO1	07
	c)	Explain the operation of Hall effect Transducer.	CO2	PO1	06
		OR			
10	a)	Discuss the classification of Active and Passive transducers	CO1	PO1	06
	b)	Give the comparison of resistance thermometer and thermistor	CO2	PO1	06
	c)	Derive an expression for gauge factor of a bonded resistance wire strain gauge	CO2	PO2	08
