

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

May 2023 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Electrical & Electronics Engineering

Duration: 3 hrs.

Course Code: 22EE3PCEEM

Max Marks: 100

Course: Electrical & Electronic Measurements

Date: 19.05.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

- 1 a) With the help of circuit diagram and phasor diagram, derive the bridge balance condition for the measurement of resistance, inductance and quality factor of a coil using Hay's bridge. **08**
- b) Draw the circuit of a Kelvin's Double bridge used for measurement of low resistances. Derive the condition for balance. **06**
- c) A Sheet of bakelite 4.5mm thick is tested at 50Hz between electrodes 0.12m in diameter. The Schering bridge employs a standard air capacitor C_2 of 106 pF capacitance, a non-reactive resistance R_4 of $1000/\pi \Omega$ in parallel with a variable capacitor $C_4 = 0.5\mu F$ and a non-reactive variable resistance R_3 . Balance is obtained with $R_3 = 260\Omega$. Compute the capacitance, loss factor and power factor of the capacitor **06**

OR

- 2 a) With the help of circuit diagram and phasor diagram, derive the bridge balance condition for the measurement of resistance, capacitance, loss factor of a capacitor using Schering bridge circuit. **08**
- b) Derive the expression for bridge sensitivity of a wheatstone bridge network with unequal ratio arms. **06**
- c) A Maxwell- Wien bridge is used to measure an unknown inductance in comparison with capacitance. The various values at balance are $R_2=40\Omega$; $R_3=60\Omega$; $R_4=1000\Omega$; $C_4=0.5\mu F$. Calculate the values of R_1 and L_1 and also the value of storage factor (Q) of coil, if frequency is 1000Hz. **06**

UNIT - II

- 3 a) With the help of neat diagram and phasor diagrams, explain the construction and operation of single phase dynamometer type power factor meter. **07**
- b) With the help of neat diagram, explain the working of dynamometer type wattmeter. **06**
- c) An electrodynamic wattmeter is used to measure the power in a 1Ω load. The load voltage is 200V and the load current is 10A at a lagging power factor of 0.8. The wattmeter voltage circuit has a resistance of 10000Ω & inductance 0.1H and it is connected directly across the load. Estimate the error in the wattmeter reading at 50 Hz frequency. **07**

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III

- 4 a) With the help of equivalent circuit and phasor diagram, derive the expression for ratio error and phase angle of a current transformer. **08**
- b) Explain the method of turns compensation used in current transformers to eliminate the ratio error. **06**
- c) A dc potentiometer has a 6step dial switch where each step represents 0.25V. The dial resistors are 25Ω each. The slide wire of the potentiometer is circular and has resistance of 25Ω . The slide wire has 250 divisions and interpolation can be done to one-fifth of a division. The working battery has a voltage of 2V with negligible internal resistance. Compute (i) the measuring range of the potentiometer (ii) working current (iii) Resolution (iv) Setting of rheostat. **06**

OR

- 5 a) With the help of circuit diagram, explain the standardization procedure and how unknown resistance is measured using Crompton dc potentiometer. **08**
- b) With the help of circuit diagram, explain how load power is measured using dc potentiometer. **06**
- c) The no load current of a ring core current transformer of nominal ratio 1000/5A, when operating at full primary current and with a secondary burden of non-inductive resistance of 1Ω is 1A at a power factor of 0.4. Calculate (i) the phase angle of current transformer (ii) the ratio error at full load, assuming that there has been no compensation. **06**

UNIT - IV

- 6 a) With the help of a neat block diagram, explain the operation of digital multimeter. **07**
- b) With the help of a neat block diagram, explain the working of digital storage oscilloscope. Mention its four specific advantages. **08**
- c) List the advantages of digital voltmeters over conventional analog voltmeters. **05**

UNIT - V

- 7 a) With the help of neat diagram, explain working of Hall effect transducer. **08**
- b) Differentiate between thermistor and resistance temperature detector. **06**
- c) With the help of neat sketch, explain the operation of piezoelectric transducer. **06**
