

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June / July 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Electrical and Electronics Engineering

Duration: 3 hrs.

Course Code: 23EE3ESEFT/19ES3GCFTH/22EE3PCFTH

Max Marks: 100

Course: Electromagnetic Field Theory/ Field Theory

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			<i>CO</i>	<i>PO</i>	Marks
1	a)	Derive an expression for electric field intensity at any point due to an infinite line charge.	<i>CO1</i>	<i>PO1</i>	08
	b)	For the point C (4.4, -115°, 2) in cylindrical coordinate system, find the rectangular and spherical coordinates.	<i>CO1</i>	<i>PO2</i>	04
	c)	Given $\mathbf{D} = 5 r \sin^2\theta \cos^2\phi \mathbf{a}_r$ C/m ² . Evaluate both sides of Gauss Divergence theorem for the region, $r < 2$.	<i>CO2</i>	<i>PO2</i>	08
OR					
2	a)	State and explain Coulomb's law of force between two-point charges. Also, determine the vector force exerted on charge Q_A by Q_B , if $Q_A = -20\mu\text{C}$ is located at A (-6, 4, 7) and $Q_B = 50\mu\text{C}$ is located at B (5, 8, -2).	<i>CO2</i>	<i>PO2</i>	08
	b)	Find the total charge contained in a 2 cm length of the electron beam for $2 \text{ cm} < z < 4 \text{ cm}$, $\rho = 1 \text{ cm}$ and $\rho_v = -5e^{-10^5\rho z} \mu\text{C/m}^3$.	<i>CO2</i>	<i>PO2</i>	06
	c)	In a certain region of space $\mathbf{D} = 8xyz^4 \mathbf{a}_x + 4x^2z^4 \mathbf{a}_y + 16x^2yz^3 \mathbf{a}_z$. Find the total electric flux passing through the rectangular surface, $z=2$, $0 < x < 2$, $1 < y < 3$ in \mathbf{a}_z direction.	<i>CO2</i>	<i>PO2</i>	06
UNIT - II					
3	a)	Derive the expression of convection current density by considering the movement of a charge element.	<i>CO2</i>	<i>PO2</i>	05
	b)	If we take the zero reference for potential at infinity, find the potential at (0, 0, 2) in free-space, caused by (i) 12 nC/m on the line $\rho = 2.5$, $z = 0$ (ii) point charge of 18 nC at (1, 2, -1).	<i>CO2</i>	<i>PO2</i>	08
	c)	Evaluate the boundary conditions related to electric field at the interface of a conductor and free-space.	<i>CO3</i>	<i>PO3</i>	07
OR					

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	4	a)	Given $\mathbf{E} = y \mathbf{a}_x + x \mathbf{a}_y + 2 \mathbf{a}_z$ V/m, determine the work done in carrying a 2C of charge from B (1,0,1) to A (0.8, 0.6, 1) along the shorter arc of the circle, $x^2 + y^2 = 1$, $z = 1$.	CO2	PO3	07
		b)	Obtain the expression for potential energy in a system of 'N' charges.	CO1	PO2	07
		c)	The current density is given in cylindrical co-ordinates as; $\mathbf{J} = -10^6 z^{1.5} \mathbf{a}_z$ in the region $0 \leq \rho \leq 20 \mu\text{m}$, and $\mathbf{J} = 0$, elsewhere. (i) Find the total current crossing the surface $z = 0.1\text{m}$ in the \mathbf{a}_z direction. (ii) If the velocity is $2 \times 10^6 \text{ m/s}$ at $z = 0.1 \text{ m}$, find the ρ_v there.	CO3	PO3	06
	UNIT - III					
5	a)	Derive the boundary conditions on \mathbf{D} and \mathbf{E} at the interface of the perfect dielectrics.	CO2	PO2	07	
	b)	Given the potential field $V = [A \rho^4 + B \rho^4] \sin 4\phi$ volts, show that $\nabla^2 V = 0$. Also, determine the values of A and B, so that $V = 100$ volts and $ \mathbf{E} = 500 \text{ V/m}$ at P ($\rho = 1, \phi = 22.5^\circ, z = 2$).	CO2	PO2	07	
	c)	Derive the expression of capacitance of a coaxial capacitor having inner radius a, outer radius b and the length L.	CO3	PO3	06	
	OR					
6	a)	Calculate numerical values for V and ρ_v at point P in free-space, if $V = 5\rho^2 \cos(2\phi)$, at P ($\rho = 3, \phi = \frac{\pi}{3}, z = 2$).	CO2	PO2	06	
	b)	Solve the Laplace's equation for the potential field in the homogeneous region between the two concentric conducting spheres with radii a and b ($b > a$), if potential $V = 0$ at $r = b$ and $V = V_0$ at $r = a$. And find the capacitance between the two concentric spheres.	CO3	PO2	08	
	c)	Let the region $z < 0$ be composed of a uniform dielectric material for which $\epsilon_r = 3.2$, while the region $z > 0$ is characterized by $\epsilon_r = 2$. Let $\mathbf{D}_1 = -30 \mathbf{a}_x + 50 \mathbf{a}_y + 70 \mathbf{a}_z \text{ nC/m}^2$. Find (i) \mathbf{D}_{N1} (ii) \mathbf{D}_{t1} (iii) θ_1 (iv) \mathbf{D}_{N2} .	CO3	PO3	06	
	UNIT - IV					
7	a)	Given the points $P_1(1, 2, 3)$ and $P_2(-3, -1, 2)$, calculate $\Delta \mathbf{H}_2$, if incremental current element, $I_1 \Delta \mathbf{L}_1 = 2\pi(-\mathbf{a}_x + \mathbf{a}_y + 2\mathbf{a}_z) \mu\text{A}\cdot\text{m}$.	CO2	PO2	05	
	b)	State and explain Ampere's circuital law. Using the same, derive the expression for magnetic field intensity at any point due to an infinite length filamentary current carrying conductor present on z-axis.	CO3	PO3	07	
	c)	Evaluate the boundary conditions at the interface of two magnetic media.	CO1	PO1	08	
	OR					

	8	a)	Consider a rectangular path $P_1(2, 3, 4)$ to $P_2(4, 3, 4)$ to $P_3(4, 3, 1)$ to $P_4(2, 3, 1)$ to P_1 . (i) Evaluate the closed line integral of \mathbf{H} about this path, given that $\mathbf{H} = 3z \mathbf{a}_x - 2x^3 \mathbf{a}_z$ A/m. (ii) Determine the quotient of the closed line integral and the area enclosed by the path as an approximation to $(\nabla \times \mathbf{H})_y$.	CO3	PO3	06
		b)	Two differential current elements, $I_1\Delta L_1 = 3 \times 10^{-6} \mathbf{a}_y$ A-m at $P_1(1, 0, 0)$ and $I_2\Delta L_2 = 3 \times 10^{-6}(-0.5\mathbf{a}_x + 0.4\mathbf{a}_y + 0.3\mathbf{a}_z)$ A-m at $P_2(2, 2, 2)$ are located in free-space. Find the vector force exerted on $I_1\Delta L_1$ by $I_2\Delta L_2$.	CO3	PO3	06
		c)	Write an explanatory note on scalar and vector magnetic potentials.	CO2	PO2	08
UNIT - V						
	9	a)	Starting from the equation of Faraday's law, obtain the point form of Maxwell's equation concerning spatial derivative of \mathbf{E} and time derivative of \mathbf{H} .	CO3	PO3	05
		b)	Derive the wave equations that characterize the propagation of uniform plane wave in free-space.	CO2	PO2	07
		c)	Starting from Maxwell's equation involving curl on \mathbf{H} , obtain the equation of Poynting's theorem and interpret the same.	CO2	PO2	08
OR						
	10	a)	Given $B_x = 2 \times 10^{-4} \cos(10^5 t) \sin(10^{-3} y)$ T, $\epsilon = 10^{-11}$ F/m and $\mu = 10^{-5}$ H/m within a certain region; (i) Find \mathbf{E} (ii) Find the total magnetic flux passing through the surface $x=0, 0 < y < 40$ m, $0 < z < 2$ m at $t=1\mu$ s.	CO3	PO3	07
		b)	Explain the inadequacy of Ampere's circuital law for time-varying fields. Obtain a suitable correction for the same, which will remain consistent for both time and non-time-varying fields.	CO2	PO2	06
		c)	Given a non-magnetic material having $\epsilon_r' = 3.2$ and $\sigma = 1.5 \times 10^{-4}$ S/m, find the following in free-space, (i) Loss tangent (ii) Attenuation constant (iii) Phase constant (iv) Intrinsic impedance. Consider $f = 3$ MHz.	CO3	PO3	07
