

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Electrical and Electronics Engineering

Duration: 3 hrs.

Course Code: 23EE3ESEFT /19ES3GCFTH /22EE3PCFTH

Max Marks: 100

Course: Electromagnetic Field Theory / Field Theory

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Develop an expression for Electric Flux Intensity (E) due to various charge distribution.	CO1	PO1	06
	b)	Develop and analyze an expression for the electric field intensity due to infinite sheet charges.	CO2	PO2	06
	c)	Given the flux density $\bar{D} = \frac{16}{r} [\cos(2\theta) \bar{a}_\theta] c/m^2$, analyze and evaluate both sides of the divergence theorem precisely for the region $1 < r < 2$ m, $1 < \theta < 2$ rad, $1 < \phi < 2$ rad.	CO3	PO3	08
OR					
2	a)	Develop an expression for Electric Flux density (D) due to various charge distribution.	CO1	PO1	06
	b)	Develop and analyze an expression for the electric field intensity due charged circular ring.	CO2	PO2	06
	c)	Given the flux density $\bar{D} = [4xz \bar{a}_x - y^2 \bar{a}_y + yz \bar{a}_z] c/m^2$. Analyze and evaluate both sides of the divergence theorem for the region of free space that includes the volume $0 < x, y, z < 1$.	CO3	PO3	08
UNIT - II					
3	a)	Given a surface charge density of 8 Nc/m^2 on the plane $x=2$, a line charge density of 30 Nc/m on the line $x=1, y=2$, a one micro coulomb point charge at P (-1, -1, 2), Evaluate V_{AB} for points A (3, 4, 0) and B (4, 0, 1).	CO2	PO2	06
	b)	Develop an expression for relation between electric field intensity (E) & scalar potential (V).	CO2	PO2	06
	c)	Develop and analyze an expression for electric boundary conditions between conductor and free space.	CO2	PO2	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		OR			
4	a)	State principal of energy conservations of charges, starting from the same obtain the equation of continuity of current.	<i>CO2</i>	<i>PO2</i>	06
	b)	Estimate and analyze the work done in carrying a -2C charge from $P_1(2, 1, -1)$ to $P_2(8, 2, -1)$ in field $E=a_x y + a_y x$ V/m: i). Along parabola $x=2y^2$; ii). Along the straight line joining P_1 & P_2 .	<i>CO2</i>	<i>PO2</i>	07
	c)	Develop and analyze an expression for electric boundary conditions between conductor and dielectric space.	<i>CO2</i>	<i>PO2</i>	07
UNIT - III					
5	a)	Analyses and develop an expression for Laplace and Poisson's Equations & also verify whether Laplace equations satisfied or not: <i>i</i>). $V = A \ln(x^2 + y^2)$ <i>ii</i>). $V = (2xy^3z^3)$	<i>CO2</i>	<i>PO2</i>	10
	b)	Write Laplace's equation in cylindrical co-ordinates, using this equation and evaluate and analyze an expression for potential distribution in the angular space between two infinite long co-axial cylinders. Also evaluate the capacitance of the same.	<i>CO2</i>	<i>PO2</i>	10
OR					
6	a)	Analyses and develop an expression for Laplace and Poisson's Equations & also Verify whether Laplace equations satisfied or not: <i>i</i>). $V = r \cos\theta + z$; <i>ii</i>). $r \cos\theta + \phi$	<i>CO2</i>	<i>PO2</i>	10
	b)	Using Laplace equation find the expression for potential distribution in the space between two plates of a parallel plate capacitor also find the capacitance of the system.	<i>CO2</i>	<i>PO2</i>	10
UNIT - IV					
7	a)	Develop and analyze an expression for the magnetic field intensity due axis of a circular conductor.	<i>CO2</i>	<i>PO2</i>	06
	b)	If $\bar{H} = 10 \sin\theta \bar{a}_\phi$ A/m, analyze and evaluate both sides of the Stokes' theorem for the surface $r = 3$, $0 \leq \theta \leq 90^\circ$, $0 \leq \phi \leq 90^\circ$. Let the surface have the \bar{a}_r direction.	<i>CO3</i>	<i>PO3</i>	08
	c)	Analyze and develop an expression for Lorentz force equation due to a moving point charge.	<i>CO2</i>	<i>PO2</i>	06
OR					
8	a)	Develop and analyze an expression for the magnetic field intensity due to infinitely straight long conductor.	<i>CO2</i>	<i>PO2</i>	06

	b)	Given $\bar{H} = \left[\frac{3r^2}{\sin\theta} \right] a_\theta + 54 r \cos\theta a_\phi A/m$ in free space: a) Evaluate the total current in the a_θ direction through the conical surface $\theta = 20^\circ; 0 \leq \phi \leq 2\pi, 0 \leq r \leq 5$ by whatever side of Stokes' theorem you like best. b) Check the result by using the other side of Stokes' theorem.	CO3	PO3	08
	c)	Develop and analyses an expression for Scalar Magnetic Potential [SMP] & Vector Magnetic Potential [VMP].	CO2	PO2	06
UNIT - V					
9	a)	What is physical significance of displacement current and write Maxwell's equations in point form and integral for time varying field in free space.	CO2	PO2	10
	b)	Analyze and develop an expression for electromagnetic waves in free space.	CO2	PO2	10
OR					
10	a)	Analyze and develop an expression for uniform plane wave in good conductor	CO2	PO2	10
	b)	State and explain Poynting theorem and Consider the region defined by $ x , y & z $ and $ z < 1$: Let $\epsilon_R = 5, \mu_R = 4$ and $\sigma = 0$. $if J_d = 20 \cos(1.5 \times 10^8 t - bx) a_y \mu A/m^2$ Evaluate: a) D,E: b) Use the point form of Faraday's law and an integration with respect to time to find H & B; c) Use $\nabla \times H = J_d + J_c$ evaluate J_d	CO3	PO3	10
