

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

Branch: Electrical and Electronics Engineering

Course Code: 23EE3ESEFT

Course: Electromagnetic Field Theory

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	State and explain vector form of coulomb's law. Write down the expression of electric field intensity due to point charge.			CO1	PO1	06
		b)	Analyses and Evaluate both sides of the divergence theorem precisely for the region: <i>if the flux density $\bar{D} = x^2 \bar{a}_x + y^2 \bar{a}_y + z^3 \bar{a}_z$; $0 < x < 2m$, $0 < y < 2m$, $0 < z < 4m$.</i>			CO2	PO2	08
		c)	In a certain region of space $D = 2xy a_x + 3yz a_y + 4zx a_z$. Evaluate the amount of Electric flux that passes through the portion bounded by $-1 \leq y \leq 2$ and $0 \leq z \leq 4$ in the a_x direction with $x=3$.			CO3	CO2	06
			UNIT - II					
	2	a)	Derive an expression for an energy density in an electric field.			CO1	PO1	04
		b)	Determine work done in carrying a charge of $-2C$ from point $P_1 (2, 1, -1)$ to $P_2 (8, 2, -1)$ in the electric field $E = y a_x + x a_y$ v/m, considering i) the path along the parabola $x = 2y^2$ and ii) along the straight line joining P_1 and P_2 .			CO2	CO2	08
		c)	Develop and analyses an expression for electric boundary conditions between two perfect dielectric of the medium.			CO2	PO2	08
			OR					
	3	a)	Show that vector electric field, E is negative gradient of scalar electric potential V .			CO1	PO1	04
		b)	At the boundary between glass ($\epsilon_r = 4$) and air the lines of electric field make an angle of 40° with normal to the boundary. If electric flux density in air is $0.25 \mu C/m^2$ determine the orientation and magnitude of electric flux density in glass.			CO2	CO2	08
		c)	Electrical potential at an arbitrary point in free space is given as $V = (x+1)^2 + (y+2)^2 + (z+3)^2$ volts. At $P(2,1,0)$, determine i). V ; ii). E ; iii).Magnitude of E , iv). D ; v). magnitude of D and vi). ρ_v			CO2	CO2	08

UNIT - III					
4	a)	Analyse and develop an expression for Laplace and Poisson's Equations & also Verify whether Laplace equations satisfied or not: 1). $V = x^2 - y^2 + z^2$; 2). $V = r\cos\theta + z$; 3). $r\cos\theta + \phi$	<i>CO2</i>	<i>PO2</i>	10
	b)	Write Laplace's equation in spherical co-ordinates. Using this equation evaluate and analyse an expression for potential difference between concentric spherical shells. Also find the capacitance of the same	<i>CO2</i>	<i>PO2</i>	10
UNIT - IV					
5	a)	State and explain Amperes circuital law. Discuss stokes theorem and explain the concept of curl.	<i>CO1</i>	<i>PO1</i>	08
	b)	Analyses and develop an expression for Lorentz force equation due to a moving point charge.	<i>CO2</i>	<i>PO2</i>	06
	c)	Discuss the boundary conditions applicable to B, H at the interface between two different magnetic materials.	<i>CO2</i>	<i>CO2</i>	06
UNIT - V					
6	a)	List Maxwell's equation in point form and integral form for time varying fields.	<i>CO1</i>	<i>PO1</i>	06
	b)	Show that the ratio of amplitudes of conduction current density(J_c) and displacement current density (J_d) is $\sigma/\omega\epsilon$ for the applied field $E = E_m \cos\omega t$. Assume $\mu = \mu_0$.	<i>CO3</i>	<i>CO2</i>	08
	c)	A 300MHz uniform plane wave propagates through fresh water for which $\sigma = 0$, $\mu_r = 1$, $\epsilon_r = 78$. Solve for i) attenuation constant ii) phase constant iii) wavelength.	<i>CO2</i>	<i>CO2</i>	06
OR					
7	a)	Define Poynting vector. Check that the power flow for a plane wave is, $E \times H$.	<i>CO1</i>	<i>PO1</i>	06
	b)	Starting from Maxwell's equations generate the general wave equation in electric and magnetic fields.	<i>CO3</i>	<i>CO2</i>	08
	c)	A 9375MHz uniform plane wave is propagating in polystyrene. If the amplitude of the Electric field intensity is 20V/m and the material is assumed to be lossless, Evaluate i). Attenuation constant ii). Phase constant iii). Wavelength iv). Velocity of propagation v). Intrinsic impedance vi). Propagation constant. For polystyrene $\mu_r = 1$, $\epsilon_r = 2.56$.	<i>CO2</i>	<i>CO2</i>	06
