

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

Branch: Electrical and Electronics Engineering

Course Code: 22EE3PCFTH

Course: FIELD THEORY

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	State and explain the coulomb's law in vector form.	<i>CO1</i>	<i>PO1</i>	06
	b)	Develop and analyse an expression for the electric field intensity due to infinite sheet charges.	<i>CO2</i>	<i>PO2</i>	06
	c)	Analyse and evaluate both sides of the divergence theorem precisely for the region: <i>if the flux density</i> $\bar{D} = x^2 \bar{a}_x + y^2 \bar{a}_y + z^3 \bar{a}_z; 0 < x < 2m, 0 < y < 2m, 0 < z < 4m$.	<i>CO3</i>	<i>PO2</i>	08
UNIT - II					
2	a)	Estimate and analyse the work done in carrying a -2C charge from $P_1(2, 1, -1)$ to $P_2(8, 2, -1)$ in field $E = y a_x + x a_y$ V/m i). Along parabola $x=2y^2$; 2). along the straight line joining P_1 & P_2 .	<i>CO2</i>	<i>PO2</i>	06
		Develop an expression for $\bar{E} = -\nabla V$	<i>CO2</i>	<i>PO2</i>	06
	b)	Develop and analyse an expression for electric boundary conditions between conductor and free space.	<i>CO2</i>	<i>PO2</i>	08
OR					
3	a)	Develop an expression for the relation between current and current density (04M) and continuity equation(04M). (04+04=08M)	<i>CO2</i>	<i>PO2</i>	08
	b)	List out properties of dielectrics.	<i>CO1</i>	<i>PO1</i>	04
	c)	Develop and analyses an expression for electric boundary conditions between conductor and dielectric's space.	<i>CO2</i>	<i>PO2</i>	08
UNIT - III					
4	a)	Analyse and develop an expression for Laplace and Poisson's Equations & also Verify whether Laplace equations satisfied or not: 1). $V = x^2 - y^2 + z^2$; 2). $V = r \cos\theta + z$; 3). $r \cos\theta + \phi$	<i>CO2</i>	<i>PO2</i>	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Using Laplace equation find the expression for potential distribution in the space between two plates of a parallel plate capacitor also find the capacitance of the system.	CO3	PO2	10
		UNIT - IV			
5	a)	Develop and Analyses an expression for the magnetic field intensity due to axis of a circular loop.	CO2	PO2	07
	b)	If $\bar{H} = 10 \sin\theta \bar{a}_\phi \text{ A/m}$, Analyses and Evaluate both sides of the Stokes' theorem for the surface $r = 3$, $0 \leq \theta \leq 90^\circ$, $0 \leq \phi \leq 90^\circ$. Let the surface have the \bar{a}_r direction.	CO3	PO2	07
	c)	Analyses and develop an expression for Lorentz force equation	CO2	PO2	06
		UNIT - V			
6	a)	State and explain faraday's law (05M) and Write Maxwell's equations in point form and integral for time varying field in free space. (05M)	CO1	PO1	10
	b)	Analyze and develop an expression for electromagnetic waves in free space.	CO3	PO2	10
		OR			
7	a)	Analyze and develop an expression for uniform plane wave in good conductor.	CO3	PO2	10
	b)	State and explain Poynting theorem (05M) and A certain material has $\sigma = 0$ and $\epsilon_R = 1$. If $H = 4 \sin(10^6 t - 0.01z) a_y \text{ A/m}$, make use of Maxwell's equations to Evaluate :a). μ_R : b). $E(z, t)$. (05M)	CO3	PO2	10
