

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Semester End Main Examinations

Programme: B.E.

Branch: Electrical & Electronics Engineering

Course Code: 22EE3PCFTH

Course: FIELD THEORY

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1	a)	Find the Electric field intensity at any given point due to 'n' number of point charges.	04
	b)	Point charges of 50 nC each are located at A (1,0,0), B (-1,0,0), C (0,1,0) and D (0, -1,0). Evaluate the total force on the charge at A.	06
	c)	Given $\mathbf{D} = 5r \sin^2\theta \cos^2 \varphi \mathbf{a}_r$ C/m ² . Evaluate both sides of Divergence theorem for the region $r < 2$.	10

UNIT - II

2	a)	Define the following: (i) Potential difference (ii).Absolute potential (iii).Equipotential surface.	06
	b)	From the law of conservation of charge, it can be said that current is continuous from one side of a reference surface to the other. Considering a suitable reference surface, obtain the current continuity equation.	06
	c)	Estimate and analyse the work done in carrying a -2 C charge from P ₁ (2 1 -1) to P ₂ (8 2 -1) in the field $\mathbf{E} = y \mathbf{a}_x + x \mathbf{a}_y$ V/m. i) Along parabola $x=2y^2$ ii) Along the straight line joining P ₁ and P ₂	08

OR

3	a)	Analyses and develop an expression for the electric boundary conditions at the interface of conductor and free-space.	08
	b)	A potential field in free space is expressed as $V = 20/(xyz)$. i. Find the total energy stored within the cube $1 < x, y, z < 2$ ii. What value would be obtained by assuming a uniform energy density equal to the value at the center of the cube?	07
	c)	List out properties of dielectrics	05

UNIT - III

4	a)	Using Laplace equation find the expression for potential distribution in the space between two plates of a parallel plate capacitor also find the capacitance of the system.	10
---	----	--	-----------

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

b) Write Laplace equation in cylindrical co-ordinates using this equation find an expression for potential distribution in the angular space between 2 infinite long co-axial cylinder. 10

UNIT - IV

5 a) State and explain Biot-Savart's law. 05

b) Develop and analyses an expression for the magnetic field intensity due to straight conductor of finite length. 08

c) Write an explanatory note on scalar and vector magnetic potentials. 07

UNIT - V

6 a) State and explain Faraday's Law for time varying field. 05

b) Develop and expression for conduction current density (J_C) and displacement current density (J_D) of time varying field and also its significance. 08

c) Derive the wave equations that characterize the propagation of uniform plane wave in free-space. 07

OR

7 a) List the Maxwell's equations applicable in the case of electromagnetic wave travelling in free-space. 06

b) Analyze and develop an expression for uniform plane wave in good conductor 08

c) State and explain Poynting's theorem. 06
