

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Electrical and Electronics Engineering

Duration: 3 hrs.

Course Code: 23EE3PCMNI

Max Marks: 100

Course: Measurements and Instrumentation

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	With a neat circuit diagram arrive at the balance condition of kelvin's double bridge.	CO2	PO2	08
		b)	A Wheatstone bridge has the following has the following resistances: $P= 1k\Omega$, $R=1 k\Omega$, $S=5k\Omega$, Galvanometer resistance $G=100\Omega$. The thevenin's source generator voltage $E_o = 24mV$ and the galvanometer current is $13.6\mu A$. Determine the value of Q.	CO2	PO2	07
		c)	Explain the Loss of Charge method for high resistance measurement.	CO2	PO1	05
OR						
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	2	a)	Explain the terms Absolute instruments and Secondary instruments w.r.t measuring systems.	CO1	PO1	04
		b)	Define the term standardization and explain the steps used for measurement using Crompton's type dc potentiometer with the circuit diagram	CO2	PO1	10
		c)	Derive the expression for the current through the galvanometer and bridge sensitivity S_B in case of unbalanced Wheatstone bridge.	CO2	PO2	06
UNIT - II						
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	3	a)	Derive the equations for balance in case of modified desauty's bridge. Draw the phasor diagram for balance condition.	CO2	PO2	06
		b)	The four arms of the bridge are Arm AB: an imperfect capacitor C_1 with equivalent resistance r_1 . Arm BC: a non-inductive resistor $R_3= 400\Omega$. Arm CD: a non-inductive resistor $R_4=5700\Omega$.	CO2	PO2	06

		Arm DA: an imperfect capacitor $C_2 = 0.5\mu F$ with equivalent resistance $r_2=0.4\Omega$ in series with resistor $R_2=4.6\Omega$. A source of frequency 480 Hz is given to the terminals A & C and a detector is connected between B & D Determine C_1 , r_1 , loss angle and the dissipation factor of the capacitor.			
	c)	Derive the equations for balance in case of Anderson's bridge. Draw the phasor diagram for balance condition.	CO2	PO2	08
OR					
4	a)	Derive the equations for balance in case of Maxwell's Inductance capacitance bridge. Draw the phasor diagram for balance condition.	CO2	PO2	07
	b)	An AC bridge circuit working at 1000Hz consists of a pure capacitance of $0.2\mu F$ as arm ab, 500Ω pure resistance as arm bc, an unknown impedance as arm cd and a parallel combination of 300Ω resistance and $0.1\mu F$ capacitance as arm da. Determine the value of unknown impedance for balancing the bridge.	CO2	PO2	07
	c)	Discuss the sources and the detectors that are used for a.c. bridges.	CO1	PO1	06
UNIT - III					
5	a)	Draw the equivalent circuit and phasor diagram of a current transformer and derive the expression for ratio error.	CO2	PO2	08
	b)	A wattmeter has a current coil of resistance 0.03 ohm and a pressure coil of resistance 6000 ohms is connected to measure the power consumed by a load. Determine the percentage error if the wattmeter is so connected that: 1) the current coil is on the load side 2) the pressure coil is on the load side If the load takes 20A at a voltage of 220V and 0.6 power factor	CO3	PO2	07
	c)	Define the following w.r.t current transformer a. Actual ratio c. Nominal ratio e. % Ratio error b. Turns ratio d. Ratio correction Factor	CO1	PO1	05
OR					
6	a)	Justify with suitable derivations that a dynamometer type wattmeter can be used for DC as well as AC power measurements.	CO2	PO2	07
	b)	A 1000/5A ,50Hz current transformer has a secondary burden comprising a non-inductive impedance of 1.6Ω . The primary winding has one turn. Determine the flux in the core and ratio error at full load. Neglect leakage reactance and assume iron loss in the core to be 1.5W at full load. The magnetizing mmF is 100A.	CO2	PO2	08

		c)	With a neat diagram explain the operation of dynamometer type power factor meter.	CO2	PO1	05
			UNIT - IV			
7	a)		With a neat diagram explain the working of Electronic Multimeter	CO2	PO1	07
	b)		With neat diagram explain the working principle of 3-bit ADC	CO2	PO1	08
	c)		A $4^{1/2}$ digit voltmeter is used for voltage measurements. i) Determine its resolution ii) How would 18.24 V be displayed on a 10V range iii) How would 0.9573 be displayed on 1V and 10V ranges.	CO3	PO2	05
			OR			
8	a)		Enumerate the difference between digital instruments and analog instruments.	CO1	PO1	05
	b)		Explain the working of Linear Ramp type DVM using necessary block diagram.	CO2	PO1	07
	c)		With a neat block diagram explain the working of digital storage oscilloscope.	CO2	PO1	08
			UNIT - V			
9	a)		Prove that gauge factor of strain gauge is given by $G_f = 1+2u$, where u is poisson's ratio.	CO2	PO2	08
	b)		Explain the operation of Hall effect Transducer.	CO2	PO1	06
	c)		Enumerate the working principle and types of a Thermocouple.	CO2	PO1	06
			OR			
10	a)		Discuss the Classification of Transducers	CO1	PO1	06
	b)		With relevant figures explain the construction and working of LVDT	CO2	PO1	08
	c)		With a neat diagram explain the operation of Photovoltaic cell	CO2	PO1	06
