

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

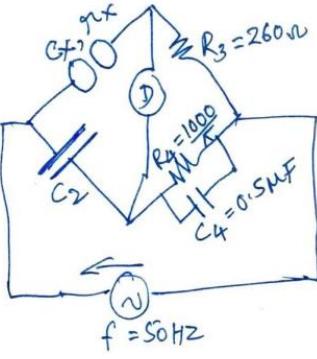
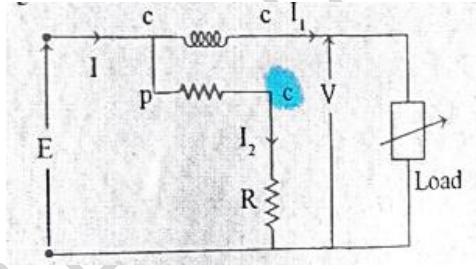
April 2025 Semester End Make-Up Examinations

Programme: B.E.

Semester: III

Branch: Electrical and Electronics Engineering

Duration: 3 hrs.



Course Code: 23EE3PCMNI

Max Marks: 100

Course: Measurements and Instrumentation

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I		
			<i>CO</i>	<i>PO</i>	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	What bridge is used to measure unknown medium resistance? Derive and explain the bridge balance condition. Also derive the expression for the bridge sensitivity.	<i>CO2</i>	<i>PO2</i>
		b)	With the help of a neat diagram, explain the basic circuit of a DC potentiometer and explain its operation.	<i>CO2</i>	<i>PO1</i>
OR					
	2	a)	List and explain briefly the various types of errors in measurement system.	<i>CO1</i>	<i>PO1</i>
		b)	What are the limitations of Wheatstone bridge? Which bridge is most suitable to measure low resistance? Derive the balance condition of that bridge.	<i>CO2</i>	<i>PO2</i>
			UNIT - II		
	3	a)	Four arms of the bridge are Arm AB: an imperfect capacitor of C_1 with equivalent resistance of r_1 . Arm BC: A non-inductive resistor of R_3 . Arm CD: A non reactive resistor of R_4 . Arm DA: An imperfect capacitor of C_2 with equivalent resistance r_2 in series with a resistor R_2 . A source frequency of 450Hz is given to the terminals of A & C and the detector is connected between B & D. At balance $R_2 = 4.8\Omega$, $R_3 = 200\Omega$, $R_4 = 2850\Omega$, $C_2 = 0.5 \mu F$, $r_2 = 0.4 \Omega$. Calculate c_1 , r_1 and dissipation factor of the capacitor.	<i>CO2</i>	<i>PO2</i>
		b)	With the help of circuit diagram and phasor diagram, derive the bridge condition for measurement of R_x and L_x of a coil using Maxwell bridge.	<i>CO2</i>	<i>PO2</i>
OR					
	4	a)	A sheet of Bakelite 4.5mm thick is tested at 50Hz between the electrodes 0.12m diameter. An ac bridge employs a standard air	<i>CO2</i>	<i>PO2</i>
					10

		<p>capacitor of 106pF, a resistance R_4 of $(1000/\pi)\Omega$ in parallel with variable capacitor C_4 and variable resistor R_3. Balance is obtained when $C_4 = 0.04\mu\text{F}$ and $R_3 = 260\Omega$. Calculate capacitance, Power factor, Loss factor, Loss angle and relative permittivity of the Bakelite sheet.</p>		
	b)	With the help of circuit diagram and phasor diagram, derive the bridge condition for measurement of C_x , loss factor, $\cos \phi$ of a capacitor using Schering bridge.	CO2	PO2
UNIT - III				
5	a)	With the help of a block diagram, briefly explain the working of an electronic energy meter.	CO2	PO1
	b)	Consider the following circuit	CO2	PO2
		<p>A wattmeter has a current coil of resistance 0.2Ω and a pressure coil of resistance 2000Ω is connected to measure the power consumed by the load. Calculate the percentage error in the reading of the wattmeter when the load takes 20A at 250V with 0.8 power factor, when i) the pressure coil is connected on the supply side ii) When the current coil is connected on the supply side iii) What load current would give equal errors with the two connections?</p>		
		OR		
6	a)	Explain the construction and working of Dynamometer type wattmeter.	CO2	PO1
	b)	With the help of equivalent circuit and phasor diagram, derive the expression for ratio error and phase angle of a current transformer.	CO2	PO2
UNIT - IV				
7	a)	List and mention the classification of DVMs. With the help of block diagram, explain the working of Ramp type DVM.	CO2	PO1

		b)	With the help of block diagram, explain the working of a Digital Storage Oscilloscope	CO2	PO1	10
			OR			
	8	a)	With the help of a diagram, explain the working of an Electronic Multimeter. Mention its advantages and disadvantages.	CO2	PO1	10
		b)	Enumerate the advantages of digital voltmeters over conventional voltmeters.	CO1	PO1	10
			UNIT - V			
	9	a)	List the basic characteristics of transducer & Identify the selection factors of the transducers.	CO1	PO1	10
		b)	With a neat diagram explain the working of LVDT	CO2	PO1	10
			OR			
	10	a)	Derive the expression of Gauge factor in Strain gauge	CO2	PO2	10
		b)	Describe the working of Data Acquisition System with the help of a block diagram	CO2	PO1	10
