

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

Branch: Electrical and Electronics Engineering

Course Code: 23EE3PCMNI

Course: Measurements and Instrumentation

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Describe the various types of measurement methods and explain instrument classification	CO1	PO1	08
		b)	Define the sensitivity of Wheatstone's bridge. Hence deduce the expression for sensitivity of the bridge ' S_B '.	CO2	PO1	08
		c)	Explain the terms (i) Static Error (ii) Relative Error	CO1	PO1	04
OR						
	2	a)	Define limiting errors and explain the Gross Errors and systematic errors by giving suitable examples.	CO2	PO1	08
		b)	With a neat bridge circuit derive the balance equation for Kelvin's double bridge.	CO2	PO1	08
		c)	Mention the limitations of Wheatstone's bridge.	CO1	PO1	04
			UNIT - II			
	3	a)	With help of circuit diagram, derive the bridge balance equation of Anderson's bridge for measuring self-inductance.	CO2	PO2	09
		b)	Describe the working of Schering bridge. Derive the equation for capacitance and Dissipation factor.	CO2	PO2	06
		c)	An AC bridge has the following constants. Arm AB- capacitor of $2.5\mu\text{F}$ in parallel with 50K ohm; Arm AD-resistance of 200 K ohm; Arm BC-capacitance of $0.5\mu\text{F}$; Arm CD-unknown capacitance C_x and R_x in series and frequency 1KHz . Determine the unknown capacitance C_x and R_x in series.	CO3	PO2	05
			UNIT - III			
	4	a)	Derive the torque equation of single phase electrodynamic type wattmeter.	CO2	PO2	08
		b)	Define the following w.r.t. current transformer a) Transformation ratio b) Ratio correction factor	CO1	PO1	04
		c)	With neat equivalent circuit and phasor diagram, arrive at the expression for ratio error in current transformer.	CO2	PO2	08

OR					
5	a)	With neat block diagram, Explain the working principle and Construction of single phase electrodynamometer type power factor meter.	<i>CO2</i>	<i>PO1</i>	08
	b)	With neat block diagram, Explain the working principle and Construction of electronic energy meter	<i>CO2</i>	<i>PO1</i>	06
	c)	A wattmeter connected to read the power consumed by an inductive load reads 28W. The voltmeter connected across the supply and the pressure coil circuit reads 250V. The ammeter connected in series with the current coil and the load reads 5A. The impedance of the pressure coil circuit is $(2160 + j6) \Omega$. The voltage drops across the ammeter and the voltmeter are neglected. Determine the percentage error in the wattmeter reading.	<i>CO3</i>	<i>PO2</i>	06
UNIT - IV					
6	a)	What are the Advantages of electronic Instruments?	<i>CO1</i>	<i>PO1</i>	05
	b)	Explain the construction and working of a RAMP type digital voltmeter.	<i>CO2</i>	<i>PO1</i>	08
	c)	Explain the construction and working of servo balancing type digital voltmeter.	<i>CO2</i>	<i>PO1</i>	07
UNIT - V					
7	a)	With the neat block diagram explain about the Piezoelectric and Hall-effect transducers.	<i>CO2</i>	<i>PO1</i>	10
	b)	Explain the construction and principle of working of a linear voltage differential transformer (LVDT).	<i>CO2</i>	<i>PO1</i>	10
