

B.M.S. College of Engineering, Bengaluru-560019

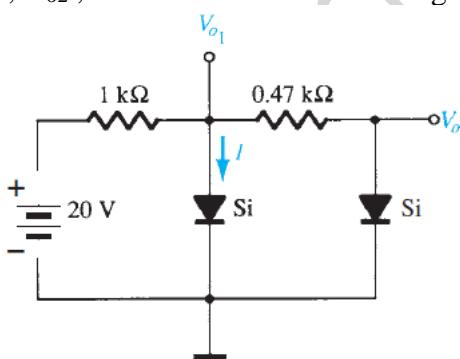
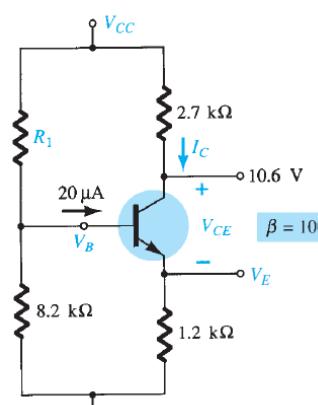
Autonomous Institute Affiliated to VTU

September / October 2023 Semester End Main Examinations

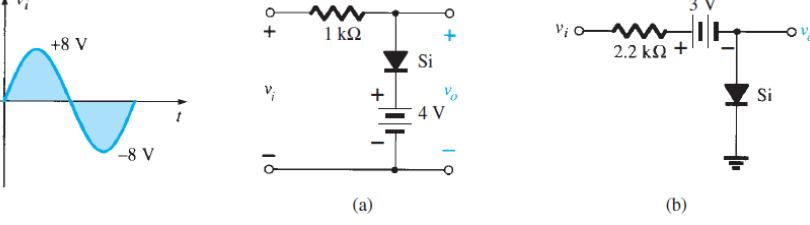
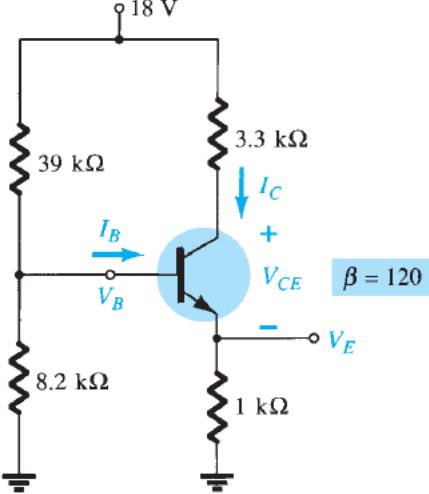
Programme: B.E.

Branch: Electrical and Electronics Engineering

Course Code: 22EE4PCAEL



Course: ANALOG ELECTRONIC CIRCUITS AND LIC

Semester: IV



Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	What is meant by transistor biasing? Using exact analysis (Thevenin Theorem), obtain expressions for I_B , I_C , V_{CE} for a voltage divider bias circuit.	CO1	PO1	08
	b)	Determine V_{o1} , V_{o2} , and I for the network of Fig. 1.b	CO2	PO1	06
		Fig 1.b			
	c)	Given the information appearing in Fig. 1.c, determine: a. I_C b. V_E c. V_{CC} d. V_{CE} e. V_B f. R_1	CO2	PO1	06
		Fig 1.c			
		OR			

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

2	a)	What is bias stabilization? What are the factors affecting the stability of a transistor? Define stability factors and give expressions for stability factors for voltage divider bias.	CO1	PO1	06
	b)	Determine v_o for each network of Fig. 2.b for the input shown	CO2	PO1	08
		<p>Fig 2.b</p>			
	c)	Determine the following for the voltage-divider configuration of Fig 2.c using the approximate approach if the condition is satisfied. a. I_C b. V_{CE} c. I_B d. V_E e. V_B	CO2	PO1	06
		<p>Fig 2.c</p>			
UNIT - II					
3	a)	What is the main feature of a Darlington connected transistor amplifier circuit? Draw the circuit diagram of an Emitter-follower configuration with a Darlington amplifier. Calculate the bias voltages for the following specifications: $V_{cc}=18V$, $R_B=3.3M\Omega$, $R_E=390\Omega$, $\beta_1=50$, $\beta_2=100$.	CO3	PO2	10
	b)	Draw the four basic feedback network connections and mark all the significant parameters in it. Derive the expressions of gain, input impedance and output impedance of voltage series feedback amplifier.	CO2	PO1	10
UNIT - III					
4	a)	Explain the operating principle of series fed class A amplifier. Obtain the expressions for output power, efficiency and maximum efficiency.	CO1	PO1	08
	b)	For a class B amplifier providing a 20-V peak signal to a 16Ω load (speaker) and a power supply of $V_{cc} = 30 V$, determine the input power, output power, and circuit efficiency.	CO2	PO1	04

	c)	With neat structural diagram and waveforms, describe the working of n-channel enhancement type MOSFET. Draw output and transfer characteristics	CO1	PO1	08
		UNIT - IV			
5	a)	With a neat circuit diagram, explain the operation of an instrumentation amplifier. List the important features and any two applications of instrumentation amplifier	CO2	PO1	10
	b)	With neat circuit diagram and waveforms, explain the operation of a second order low pass filter. Draw the frequency response. Derive an expression for the transfer function of the filter.	CO2	PO1	10
		OR			
6	a)	With the help of a circuit diagram, show that an op-amp can be used as (i) inverting adder and (ii) non-inverting adder. Draw an op-amp circuit whose output is $V_4 + V_3 - V_1 - V_2$	CO3	PO2	10
	b)	With neat circuit diagram and waveforms, explain the operation of a second order low pass filter. Draw the frequency response. Derive an expression for the transfer function of the filter.	CO2	PO1	10
		UNIT - V			
7	a)	With circuit diagrams, explain the operation of a voltage to current converter if the load is (i) floating and (ii) grounded. Is there any limitation on the size of the load when grounded?	CO2	PO1	10
	b)	For the Schmitt trigger circuit shown in Fig. 7 b, plot V_o versus V_i for (a) $V_R = 0 \text{ V}$, (b) $V_R = 5 \text{ V}$.	CO4	PO2	10

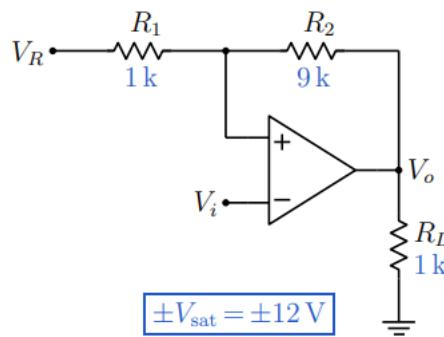


Fig. 7.b
