

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

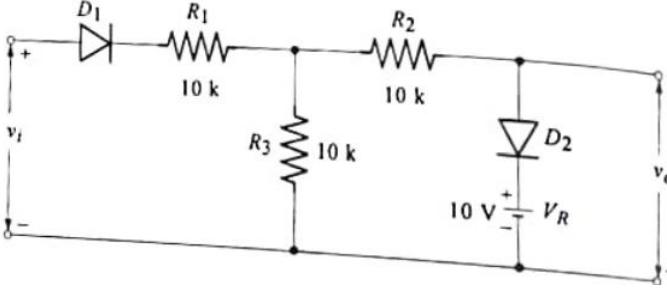
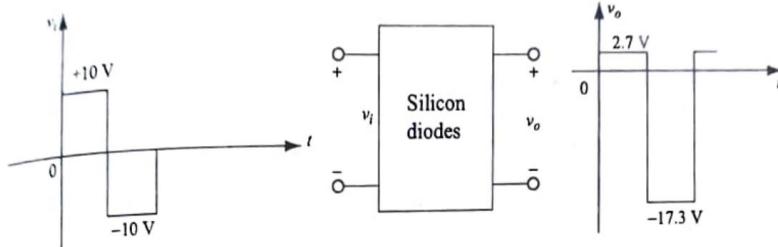
February 2025 Semester End Main Examinations

Programme: B.E.

Branch: Electrical and Electronics Engineering

Course Code: 22EE4PCAEL

Course: Analog Electronic Circuits and LIC



Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - I			CO	PO	Marks
1	a)	Explain the operation of double ended clipper circuit	CO2	PO1	06
	b)	Explain the operation of positive clamper circuit with relevant circuit and waveforms	CO2	PO1	06
	c)	Design a voltage divider bias circuit having silicon transistor with $V_{cc} = 18V$, $I_c = 2.3mA$, $V_{CE} = 8.2V$, $RC = 3.3K$, $\beta = 100$ & $S(I_{CO}) = 5$	CO2	PO3	08
OR					
2	a)	Plot the transfer characteristics of the circuit shown in Fig 2a assuming ideal diodes and sketch the output voltage wave form if $V_s = 40\sin\omega t$	CO2	PO3	08
		Fig 2a			
	b)	For the output waveform shown in fig 2b draw the circuit schematic	CO2	PO3	06
		Fig 2b			

	c)	What is the advantage of voltage divider biasing? Justify answer by deriving the expressions for collector current, emitter current and stability factor	CO1	PO2	06
		UNIT - II			
3	a)	Explain the various types of feedback amplifiers.	CO2	PO2	08
	b)	An amplifier is required to deliver 50W to a 16ohm loud speaker i) Calculate the input power required if the power gain is 20dB ii) Calculate the input voltage required if the amplifier voltage gain is 40dB	CO3	PO2	06
	c)	Explain the operation of a series fed class A amplifier. Obtain expressions for output power, efficiency, maximum efficiency.	CO2	PO2	06
		OR			
4	a)	Draw the circuit diagram of a Darlington configuration of BJT amplifier circuit. Derive the expressions for the bias points	CO2	PO2	10
	b)	Determine the voltage gain, input, and output impedance with feedback for voltage-series feedback having $A = -100$, $R_i = 10 \text{ k}\Omega$, and $R_o = 20 \text{ k}\Omega$ for feedback of (a) $b \beta=0.1$ and (b) $b \beta=0.5$.	CO2	PO2	10
		UNIT - III			
5	a)	Draw the structure of MOSFET, and explain the working principle, sketch the output characteristics of MOSFET	CO2	PO2	10
	b)	A transformer coupled class A amplifier drives a load of 8 ohm through a 3:1 transformer. With $V_{cc}=24\text{V}$, the circuit delivers 2W to the load. The transformer efficiency is 80%. Find i) Power across the transformer primary ii) Conversion efficiency if dc collector current is 260mA	CO3	PO3	06
	c)	Show that class A power amplifier maximum efficiency is 25%	CO2	PO2	04
		OR			
6	a)	Explain transformer coupled class-A amplifier.	CO2	PO2	08
	b)	Define drain resistance, transconductance and amplification factor of JFET.	CO2	PO2	06
	c)	With the help of a neat diagram explain the operation of n -channel enhancement type MOSFET.	CO2	PO2	06
		UNIT-IV			
7	a)	Obtain the expressions for the voltage gain of inverting and non-inverting amplifier	CO3	PO2	08
	b)	Differentiate between adjustable and fixed voltage regulators	CO3	PO2	06
	c)	Design a low pass filter with $f_c=2\text{kHz}$ and a pass band gain of 4. Plot the frequency response and determine the value of quality factor Q.	CO4	PO2	06

OR					
8	a)	Design an opamp adder-subtractor circuit with the following output voltage expression $V_o=4(V_3+V_4)-2(V_1+V_2)$.	CO3	PO2	08
	b)	Explain the operation of instrumentation Amplifier.	CO2	PO2	06
	c)	Using LM 317 design an adjustable voltage regulator to satisfy the following specifications: output voltage $V_o= 10$ to $12V$ and output current $I_o=200mA$, draw the complete circuit diagram and incorporate the component values	CO4	PO3	06
UNIT - V					
9	a)	In a symmetrical inverting Schmitt trigger, calculate the values of feedback network resistors if the saturation voltages are $\pm 12V$ and the hysteresis width is $5V$. Draw the circuit incorporating all the values	CO3	PO3	08
	b)	Explain the operation of saw-tooth generator	CO3	PO2	06
	c)	Explain the operation of voltage to current converter with load grounded.	CO2	PO2	06
OR					
10	a)	Explain with a neat circuit diagram & waveform the operation of inverting Schmitt trigger circuit. Design a Schmitt trigger for $UTP=3.5V$ and $LTP=2.0V$. $V_{sat}=10V$.	CO2	PO2	10
	b)	With the help of a neat circuit diagram, explain the operation of the triangular generator op-amp application. Derive an equation for the frequency of oscillations.	CO2	PO2	10
