

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Branch: Electrical and Electronics Engineering

Course Code: 22EE4PCAEL

Course: Analog Electronic Circuits and LIC

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	What is mean by transistor biasing? Using exact analysis, obtain expressions for I_B , I_C , V_{CE} .	CO1	PO2	10
	b)	Determine the output waveform for the sinusoidal input of fig 1.b	CO3	PO2	10
OR					
2	a)	From fundamentals, derive the r_e equivalent model of an npn BJT with voltage divider bias circuit. Derive the expressions for voltage gain, current gain, input impedance and output impedance.	CO2	PO2	10
	b)	Obtain V_0 for the network shown in figure 2.b. Give step-by step procedure to obtain the output voltage. Assume ideal diode	CO3	PO3	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

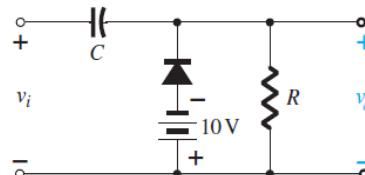
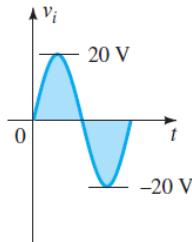
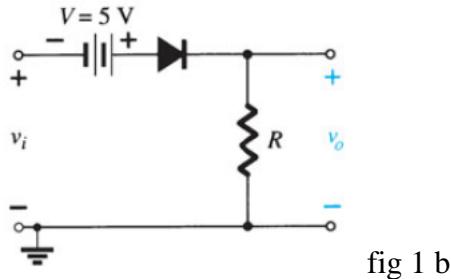
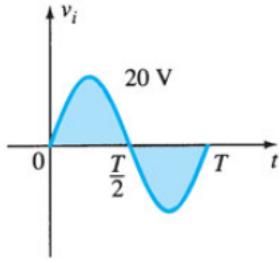
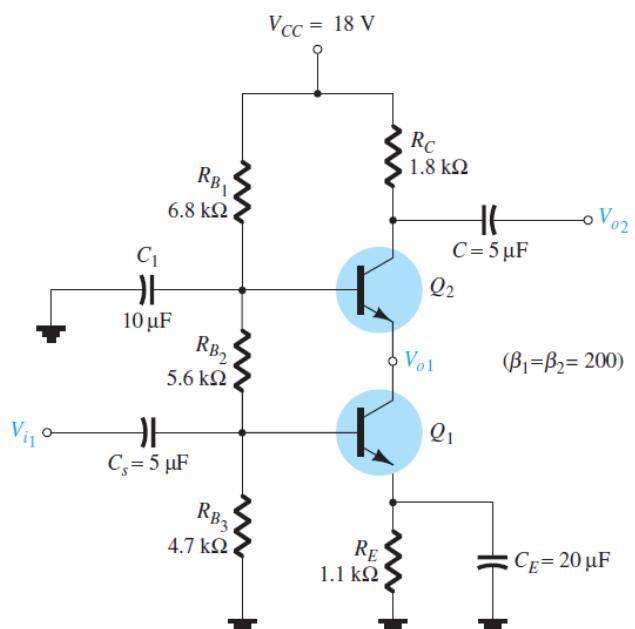
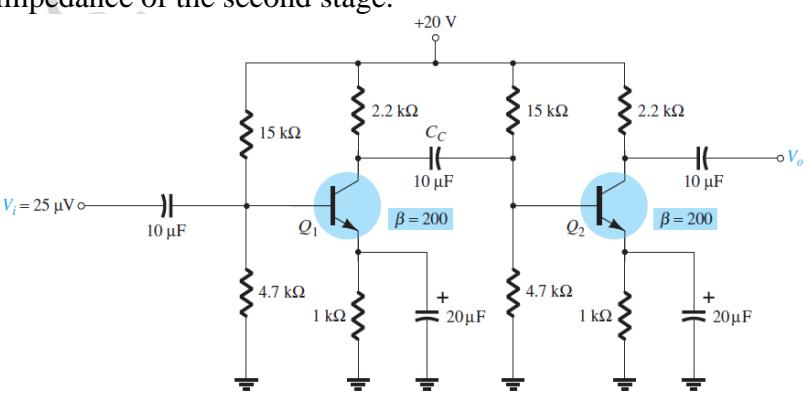
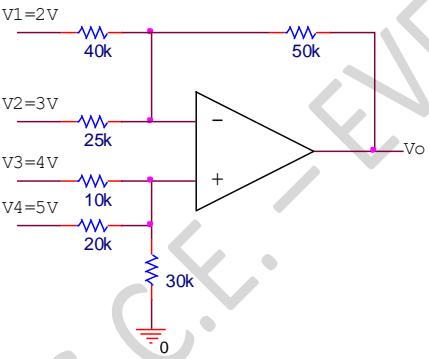








fig 2 b

UNIT - II					
3	a)	Draw the four basic feedback network connections and mark all the significant parameters in it. Derive the expressions of gain, input impedance and output impedance of voltage series feedback amplifier.	CO3	PO2	10
	b)	Calculate the no-load voltage gain for the cascode configuration of fig 3 b	CO3	PO2	10
		<p style="text-align: center;">Fig 3 b</p>			
OR					
4	a)	a. Calculate the no-load voltage gain and output voltage of the RC -coupled transistor amplifiers of Fig. 4 a. b. Calculate the overall gain and output voltage if a $4.7 \text{ k}\Omega$ load is applied to the second stage, and compare to the results of part (a). c. Calculate the input impedance of the first stage and the output impedance of the second stage.	CO3	PO2	10
		<p style="text-align: center;">Fig 4 a</p>			
	b)	Draw the practical circuit of current series feedback and derive the expressions of voltage gain, input and output impedances.	CO2	PO2	10

UNIT - III					
5	a)	With neat structural diagram and waveforms, describe the working of n-channel depletion type MOSFET. Draw output and transfer characteristics	CO2	PO2	10
	b)	For a class B amplifier using a supply of $V_{CC} = 30$ V and driving a load of 16Ω , determine the maximum input power, output power, and transistor dissipation.	CO3	PO2	10
OR					
6	a)	Derive the expression for maximum efficiency of a series- fed class A amplifier.	CO2	PO2	10
	b)	With neat structural diagram and waveforms, describe the working of n-channel enhancement type MOSFET. Draw output and transfer characteristics	CO2	PO2	10
UNIT - IV					
7	a)	What is a band pass filter? With a circuit diagram, describe the operation of an opamp based band pass filter. Draw the frequency response.	CO2	PO2	10
	b)	Find V_o for the adder-subtractor shown	CO4	PO2	10
OR					
8	a)	With neat circuit diagrams, describe the working of inverting and non-inverting op-amp configurations. Derive the expression of output voltage in both the cases. Plot the waveforms for a sinusoidal input	CO3	PO2	10
	b)	With a neat circuit diagram, explain the operation of an instrumentation amplifier. List the important features and any two applications of instrumentation amplifier	CO3	PO2	10
UNIT - V					
9	a)	(i) Sketch and explain the circuit of (i) Voltage to current converter with grounded load (ii) Current to voltage converter with floating load with relevant mathematical equations. Also, mention its applications.	CO3	PO2	10

		(ii) Draw the input and output waveforms of a non-inverting comparator with negative Vref.			
	b)	With relevant circuit diagram and waveforms describe the operation of RC phase shift oscillator. Derive the expression for frequency of operation.	CO2	PO2	10
		OR			
10	a)	Design an op-amp differentiator that will differentiate an input signal with $f_{max}=100Hz$. Draw the output waveform for a square wave input of 1V peak at 100Hz applied to the differentiator. Assume $C1=0.1\mu F$.	CO4	PO2	10
	b)	With relevant circuit diagram and waveforms describe the operation of a triangular wave generator. Derive the expression for frequency of operation.	CO2	PO2	10
