

# B.M.S. College of Engineering, Bengaluru-560019

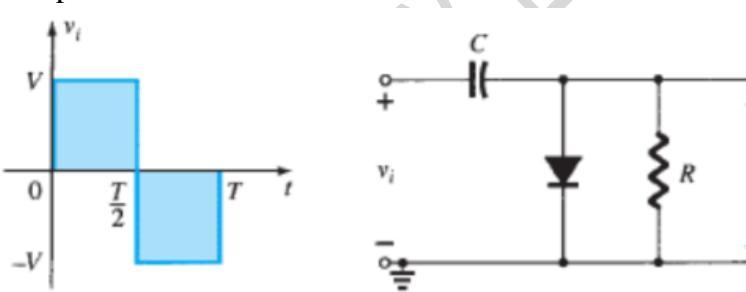
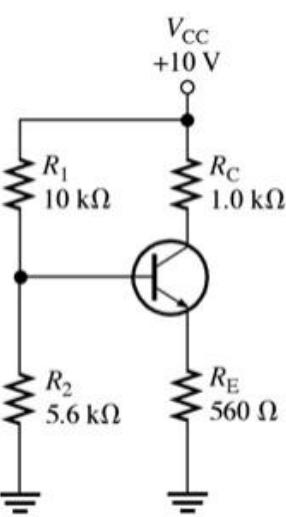
Autonomous Institute Affiliated to VTU

## December 2023 Supplementary Examinations

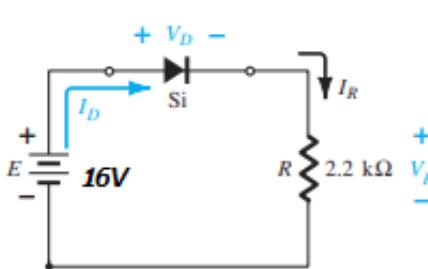
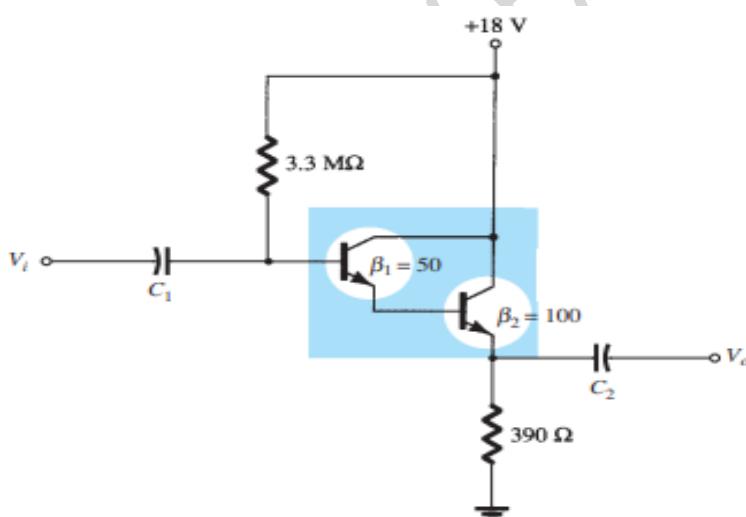
**Programme: B.E.**

**Semester: IV**

**Branch: Electrical and Electronics Engineering**



**Duration: 3 hrs.**

**Course Code: 22EE4PCAEL**



**Max Marks: 100**

**Course: ANALOG ELECTRONIC CIRCUITS AND LIC**

**Instructions:** 1. Answer any FIVE full questions, choosing one full question from each unit.  
2. Missing data, if any, may be suitably assumed.

| UNIT - I |    |                                                                                                                                                                                                                                                                                                                                                                                         | CO  | PO  | Marks     |
|----------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----------|
| 1        | a) | With a neat output device characteristic of BJT explain the importance of Q Point in biasing.                                                                                                                                                                                                                                                                                           | CO1 | PO1 | <b>05</b> |
|          | b) | Determine the output voltage and input – output waveform of the circuit shown in Fig. 1b. Assuming ideal diodes, $1\text{k}\Omega$ resistor and $1\text{ Vp}$ .                                                                                                                                                                                                                         | CO3 | PO2 | <b>07</b> |
|          | c) | <p>Fig.1b</p>  <p>Determine <math>V_{CE}</math> and <math>I_C</math> in the voltage-divider biased transistor circuit. Assume <math>\beta_{DC} = 100</math> and <math>I_E \approx I_C</math>.</p> <p>Fig.1c</p>  | CO2 | PO1 | <b>08</b> |

**Important Note:** Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.  
Revealing of identification, appeal to evaluator will be treated as malpractice.

| <b>OR</b>         |    |                                                                                                                                                    |     |     |           |
|-------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----------|
| 2                 | a) | Derive expressions for $A_v$ , $A_i$ , $Z_i$ and $Z_o$ for common emitter voltage divider bias configuration using complete $r_e$ equivalent model | CO2 | PO1 | <b>08</b> |
|                   | b) | For the series-diode shown in Fig 1c. Determine $V_D$ , $V_R$ and $I_D$                                                                            | CO2 | PO1 | <b>06</b> |
|                   |    |                                                                   |     |     |           |
|                   |    | Fig.2b                                                                                                                                             |     |     |           |
|                   | c) | Using exact analysis (Thevenin Theorem), obtain expressions for $I_B$ , $V_{CE}$ for a voltage divider bias circuit.                               | CO2 | PO1 | <b>06</b> |
| <b>UNIT - II</b>  |    |                                                                                                                                                    |     |     |           |
| 3                 | a) | Draw the four basic feedback network connections and mark all the significant parameters in it.                                                    | CO1 | PO1 | <b>08</b> |
|                   | b) | Determine the dc bias voltages and currents for the Darlington configuration of Fig. 3b.                                                           | CO3 | PO2 | <b>07</b> |
|                   |    |                                                                |     |     |           |
|                   |    | Fig.3b.                                                                                                                                            |     |     |           |
|                   | c) | With a neat circuit diagram explain the operation of basic cascode connection.                                                                     | CO1 | PO2 | <b>05</b> |
| <b>UNIT - III</b> |    |                                                                                                                                                    |     |     |           |
| 4                 | a) | Describe the working and construction of N channel Enhancement type MOSFET                                                                         | CO1 | PO2 | <b>08</b> |
|                   | b) | Determine the efficiency of a transformer-coupled class A amplifier for a supply of 12 V and outputs of:<br>a) $V(p) = 12$ V. b) $V(p) = 6$ V.     | CO2 | PO2 | <b>04</b> |
|                   | c) | With a relevant circuit explain DC bias and AC operation of a series fed Class A amplifier also arrive at the expression for maximum efficiency .  | CO2 | PO2 | <b>08</b> |

| <b>UNIT - IV</b> |    |                                                                                                                                                                                                                                                                                                                                                                                                     |     |     |           |
|------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----------|
| 5                | a) | With neat circuit diagram and waveforms, explain the operation of a first order low pass filter. Draw the frequency response. Derive an expression for the transfer function of the filter.                                                                                                                                                                                                         | CO1 | PO2 | <b>08</b> |
|                  | b) | Referring to the Fig.5b, design an adjustable positive voltage regulator using LM317 for an output voltage $V_o$ varying from 4 to 12V and an output $I_o$ of 1A.                                                                                                                                                                                                                                   | CO3 | PO3 | <b>07</b> |
|                  |    |                                                                                                                                                                                                                                                                                                                                                                                                     |     |     |           |
|                  |    | Fig.5b                                                                                                                                                                                                                                                                                                                                                                                              |     |     |           |
|                  | c) | Describe the important features of Instrumentation amplifier                                                                                                                                                                                                                                                                                                                                        | CO1 | PO1 | <b>05</b> |
| <b>OR</b>        |    |                                                                                                                                                                                                                                                                                                                                                                                                     |     |     |           |
| 6                | a) | With a neat circuit connection explain the operation of LM337 regulator.                                                                                                                                                                                                                                                                                                                            | CO2 | PO2 | <b>08</b> |
|                  | b) | Given a band pass filter with resonant frequency of $f_r$ of 1000Hz and a bandwidth (B) of 3000Hz, Determine its a) quality factor b) lower cut-off frequency and c) higher cut-off frequency.                                                                                                                                                                                                      | CO2 | PO2 | <b>07</b> |
|                  | c) | With neat block diagrams explain the types of linear voltage regulators.                                                                                                                                                                                                                                                                                                                            | CO2 | PO2 | <b>05</b> |
| <b>UNIT - V</b>  |    |                                                                                                                                                                                                                                                                                                                                                                                                     |     |     |           |
| 7                | a) | For the Schmitt trigger circuit shown in Fig.7a. $R_1 = 56k\Omega$ , $R_2 = 150\Omega$ , $V_i = 1 V_{pp}$ sine wave of frequency 50Hz, $V_{ref} = 0V$ and op amp 741 is used with supply voltages of $\pm 15V$ and the saturation voltages are $\pm 13V$ . Determine the threshold voltages $V_{UT}$ and $V_{LT}$ and draw the input and output waveforms. Also, plot the hysteresis voltage curve. | CO2 | PO2 | <b>06</b> |
|                  |    |                                                                                                                                                                                                                                                                                                                                                                                                     |     |     |           |
|                  |    | Fig.7a.                                                                                                                                                                                                                                                                                                                                                                                             |     |     |           |

|  |    |                                                                                                         |     |     |           |
|--|----|---------------------------------------------------------------------------------------------------------|-----|-----|-----------|
|  | b) | With a neat circuit diagram enumerate the operation of voltage to current converter with grounded load. | CO2 | PO2 | <b>07</b> |
|  | c) | With a neat circuit diagram explain triangular wave generator                                           | CO2 | PO2 | <b>07</b> |

\*\*\*\*\*

SUPPLEMENTARY EXAMS 2023