

B.M.S. College of Engineering, Bengaluru-560019

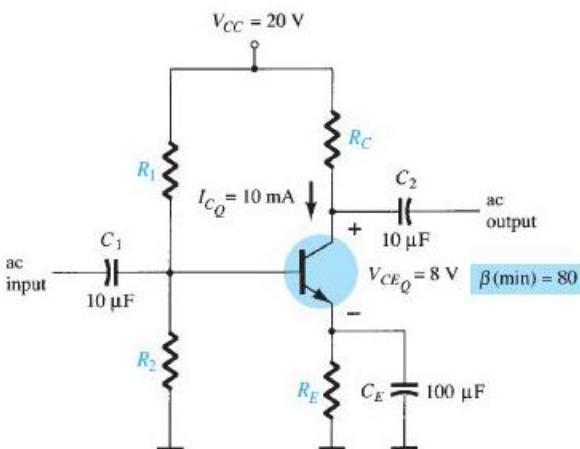
Autonomous Institute Affiliated to VTU

February 2025 Semester End Main Examinations

Programme: B.E.

Branch: Electrical and Electronics Engineering

Course Code: 23EE4PCAEL


Course: Analog Electronics and Linear Integrated Circuits

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	With a neat circuit and relevant equations, analyze a Fixed Bias circuit, for a BJT in common emitter configuration.	CO3	PO1	07
	b)	Determine the levels of R_C , R_E , R_1 , R_2 for the network shown in Fig. 1 for the operating point indicated.	CO4	PO2	07
<p>Fig. 1</p>					
	c)	Analyze a Common Emitter Fixed Bias configuration with relevant equations of gains and impedances. Also, draw the r_e equivalent model for the same.	CO3	PO1	06
OR					
2	a)	Given $\beta = 90$ for the circuit shown in Fig. 2, determine i) r_e ii) Z_i iii) Z_o ($r_o = \infty \Omega$) iv) A_v ($r_o = \infty \Omega$) v) the parameters if $r_o = 50k\Omega$ and compare the results.	CO2	PO2	07

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

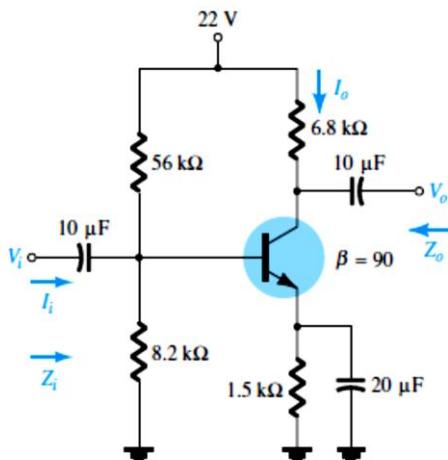
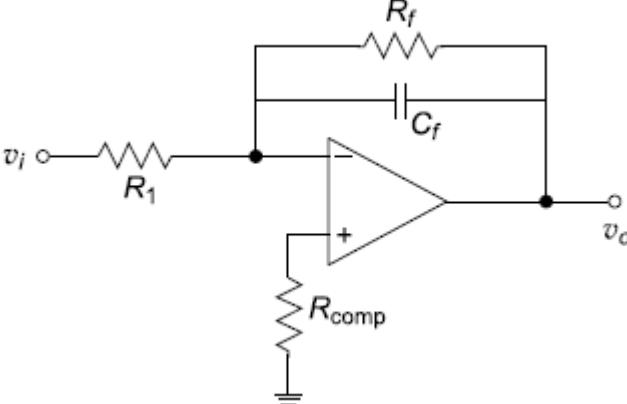
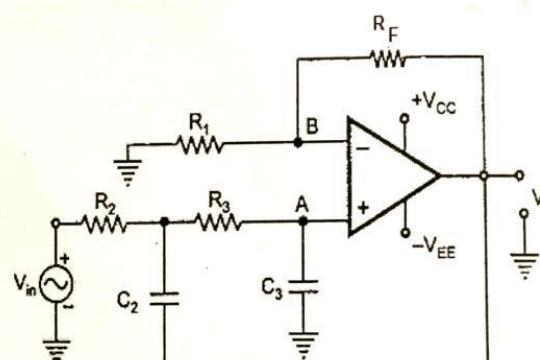




Fig. 2

	b)	Analyze a voltage divider bias configuration with relevant equations of gains and impedances. Also, draw the re equivalent model for the same.	CO3	PO2	07
	c)	Explain the operation and characteristics of a Bipolar Junction transistor with relevant diagrams.	CO1	PO1	06
UNIT - II					
3	a)	Explain the essential operation and constructional features of a n-channel Depletion type MOSFET. Also, sketch the transfer characteristics for an <i>n</i> -channel depletion-type MOSFET with $I_{DSS} = 10$ mA and $V_p = 4$ V.	CO1	PO2	12
	b)	For the E – MOSFET in the voltage divider configuration shown in Fig. 3, given, $R_D = 2.4\text{k}\Omega$, $R_S = 1.5\text{k}\Omega$, $R_1 = 2.1\text{M}\Omega$, $R_2 = 270\text{k}\Omega$, $V_{DD} = 16\text{V}$, $I_{DSS} = 8\text{mA}$, $V_{GS} = -2\text{V}$.	CO2	PO2	08
		Fig. 3			
		Determine the Q - operating point, V_D , V_S . (Use graph sheet for accurate reading).			
		OR			
4	a)	List the advantages and disadvantages of MOSFET	CO2	PO2	05
	b)	Explain the operation of n-channel enhancement type MOSFET	CO2	PO2	08
	c)	Explain the voltage divider bias configuration of E MOSFET	CO2	PO2	07

UNIT - III					
5	a)	Substitute the complete hybrid equivalent circuit into a two-port system and derive current and voltage gain expressions. (Generic expressions).	CO3	PO2	07
	b)	Draw the AC equivalent circuit using an approximate hybrid equivalent model for the BJT voltage divider bias configuration. Write the expressions for input impedance, output impedance, voltage gain, and current gain.	CO1	PO2	06
	c)	With a neat circuit diagram and waveforms, explain how the Complementary Symmetry Class B power amplifier works. Calculate the maximum efficiency of a Class B amplifier.	CO2	PO1	07
OR					
6	a)	Derive the expressions for input impedance, output impedance and voltage gain of a common emitter fixed bias configuration in re model. For the network with $R_B = 470\text{k}\Omega$, $R_c = 3\text{k}\Omega$, $V_{cc} = 12\text{V}$, $\beta = 100$ and $r_o = 50\text{k}\Omega$, find the values of Z_i , Z_o and A_v .	CO2	PO1	10
	b)	Explain the operating principle of transformer coupled class A amplifier. Draw the characteristics with load lines. Obtain the expressions for output power, efficiency and maximum efficiency.	CO2	PO1	10
UNIT - IV					
7	a)	With a neat circuit diagram and relevant equations, briefly explain the operation of: <ul style="list-style-type: none"> (i) Differential amplifier and (ii) Three input Inverting summing amplifier. 	CO1	PO1	08
	b)	Define and explain the following terminologies: <ul style="list-style-type: none"> (i) Input offset voltage, (ii) Input bias current, (iii) Slew Rate, (iv) Gain Bandwidth product 	CO1	PO1	08
	c)	For a practical integrator circuit shown in Fig. 4, analyze and determine the lower frequency limit of integration and the output response for a sine wave input of 1V peak at 2.5kHz.	CO3	PO2	04
<p>Fig. 4</p> <p>Assume, $R_1 = 10\text{k}\Omega$, $R_f = 100\text{k}\Omega$ and $C_f = 10\text{nF}$</p>					
		OR			

	8	a)	With a neat circuit diagram and relevant equations, briefly explain the operation of: (i) Summing amplifier and (ii) Scaling amplifiers.	CO1	PO1	08
	b)	Define and explain the following terminologies: (i) Input offset current, (ii) Common Mode Rejection Ratio, (iii) Input Resistance (iv) Output Resistance		CO1	PO1	08
	c)	Design a differentiator to differentiate an input signal that varies in frequency from 10Hz to about 1kHz. Draw the complete circuit with component values.		CO4	PO2	04
		UNIT - V				
9	a)	Using a 741 op-amp with a saturation voltage ($\pm V_{sat}$) of $\pm 14V$, design an inverting Schmitt Trigger circuit with a $V_{UTP} = +6V$ and $V_{LTP} = +3V$. Explain how it works, sketch the input, output waveforms, and hysteresis curve.		CO4	PO2	07
	b)	With a neat circuit diagram and waveforms, explain the operation of a Triangular Wave Generator circuit. Derive an expression for the frequency of the output triangular waveform.		CO2	PO2	07
	c)	For the circuit shown in the Fig. 5, $R_2 = 20\text{ k}\Omega$, $R_3 = 10\text{ k}\Omega$, $C_2 = 0.1\text{ }\mu\text{F}$, $C_3 = 0.01\text{ }\mu\text{F}$, $R_1 = 25\text{ k}\Omega$ and $R_F = 16\text{ k}\Omega$. Find the cut-off frequency and passband gain. Plot its magnitude response.		CO3	PO2	06
		Fig. 5				
		OR				
10	a)	With a relevant circuit explain the operation of triangular wave.		CO3	PO2	08
	b)	Design RC phase shift oscillator circuit to generate sustained oscillations of frequency of 1kHz		CO3	PO2	06
	c)	What are filters? How are they classified		CO3	PO2	06
