

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Semester: IV

Branch: Electrical and Electronics Engineering

Duration: 3 hrs.

Course Code: 23EE4PCAEL

Max Marks: 100

Course: Analog Electronics and Linear Integrated Circuits

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Describe the working of npn transistor in Common Emitter configuration. Draw the input and output characteristics. Mark all the regions of operation and load line.	CO1	PO1	10
	b)	i) Given $\beta=120$, $r_e=4.5\Omega$, $r_o=40k\Omega$, sketch approximate hybrid equivalent model. ii) Given $h_{ie}=1k$, $h_{re}=2 \times 10^{-4}$, $h_{fe}=90$, $h_{oe}=20 \mu\text{S}$. Sketch the r_e model.	CO2	PO1	10
OR					
2	a)	What is bias stabilization? What are the factors affecting the stability of a transistor? Define stability factors and give expressions for stability factors for voltage divider bias.	CO1	PO1	06
	b)	What is the importance of constant current sources in an integrated circuit? i. Construct a constant current source circuit with a npn transistor. ii. Draw a modified circuit in which the output current is independent of the supply voltage.	CO2	PO1	08
	c)	Determine the following for the fixed-bias configuration of Fig. 2c. a. I_{BQ} and I_{CQ} . b. V_{CEQ} . c. V_B and V_C . d. V_{BC} .	CO2	PO3	06
Fig. 2c.					
UNIT - II					
3	a)	With a neat circuit diagram, illustrate the operation of an n-channel enhancement type MOSFET. Draw its output and transfer characteristics.	CO3	PO2	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Determine I_{DQ} , V_{GSQ} , and V_{DS} for the network of Figure 3b	CO2	PO1	08
		Figure 3b			
	c)	Draw the small signal model of enhancement type MOSFET. Derive the expression for the transconductance gm .	CO2	PO3	04
		UNIT - III			
4	a)	Derive the expressions for input impedance, output impedance and voltage gain of a common emitter fixed bias configuration in re model. For the network with $R_B=470k\Omega$, $R_c=3k\Omega$, $V_{cc}=12V$, $\beta=100$ and $r_o=50k\Omega$, find the values of Z_i , Z_o and A_v .	CO1	PO1	10
	b)	Explain the operating principle of transformer coupled class A amplifier. Draw the characteristics with load lines. Obtain the expressions for output power, efficiency and maximum efficiency.	CO2	PO1	10
		UNIT - IV			
5	a)	List any eight characteristics of an ideal op-amp	CO2	PO1	06
	b)	Define the following terms with reference to an op-amp i. Input offset voltage ii. Input bias current iii. Power supply rejection ratio	CO2	PO1	06
	c)	Design an op-amp differentiator that will differentiate an input signal with $f_{max}=100Hz$. Draw the output waveform for a square wave input of 1V peak at 100Hz applied to the differentiator. Assume $C1=0.1\mu F$.	CO2	PO4	08
		OR			
6	a)	Draw the frequency response of an op-amp by deriving the expression of open-loop voltage gain as a function of frequency	CO3	PO2	08
	b)	Design and draw an op-amp adder circuit to get the output expression as $V_o= - (5V_1+0.5V_2+3.5V_3)$. Assume the feedback resistor to be $1k\Omega$.	CO2	PO3	06
	c)	What is CMRR in an op-amp? What is the significance of CMRR. What is the typical value of CMRR of uA741 op-amp.	CO2	PO2	06
		UNIT - V			
7	a)	With neat circuit diagram and waveforms, explain the operation of a second order low pass filter. Draw the frequency response. Derive an expression for the transfer function of the filter.	CO2	PO1	10
	b)	With neat circuit diagram and waveforms, explain the operation of an Astable Multivibrator circuit. Derive an expression for the total time period of the output waveform.	CO4	PO2	10
