

B.M.S. College of Engineering, Bengaluru-560019

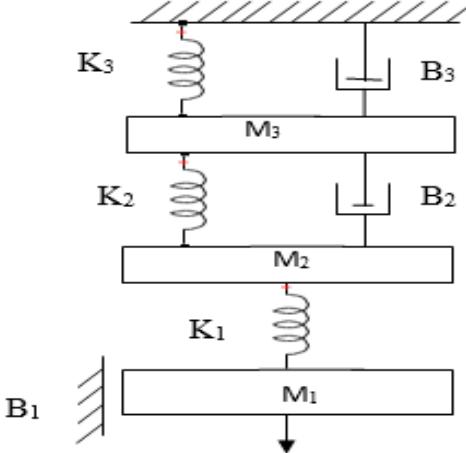
Autonomous Institute Affiliated to VTU

August 2024 Semester End Main Examinations

Programme: B.E.

Branch: Electrical and Electronics Engineering

Course Code: 23EE4ESCTH


Course: Control Theory

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Define Transfer Function? Derive an expression for the Transfer Function of a negative feedback closed loop control system.	<i>CO1</i>	-	05
	b)	Explain the concept of open loop and closed loop control system with its advantages.	<i>CO1</i>	-	05
	c)	Describe on Linearization of non-linear system with an example and explain about Discrete time and Continuous time.	<i>CO1</i>	-	10
UNIT - II					
2	a)	Draw the F-V & F-I analogous circuits for the given mechanical system shown in Fig.2(a) and starting from the basics write the equations for both systems.	<i>CO2</i>	<i>PO2</i>	10
 Fig.2(a)					

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	<p>Using Mason's gain formula, obtain the transfer function for the given Fig.2(b)</p>	CO2	PO2	10
		OR			
3	a)	<p>Draw the Signal Flow Graph for the given block diagram in Fig.3(a) and hence find $\frac{C(s)}{R(s)}$</p>	CO2	PO2	10
	b)	<p>Draw the block diagram for the system described by following equations & hence find $\frac{C(s)}{R(s)}$</p> $E_1 = R(S) - C(S).H_3; E_2 = E_1 - E_4.H_1; E_3 = E_2.G_1 - C(S).H_2;$ $E_4 = E_3.G_2; \quad C(S) = E_4.G_3.$	CO2	PO2	10
		UNIT - III			
4	a)	<p>Starting from the fundamentals, derive an expression for time response of a second order control system under underdamped condition.</p>	CO2	PO2	10
	b)	<p>Open loop transfer function of Unity feedback control system</p> $G(s) H(s) = \frac{64}{s(s+9.6)}$ <p>Determine the following for unit step excitation:</p> <p>(i) t_r (ii) t_p (iii) % Maximum overshoot t_{ss} for 2% tolerance.</p>	CO2	PO2	10

OR					
5	a)	<p>For the system shown in Fig.5(a) find (i) $\frac{C(S)}{R(S)}$ & type represented by $\frac{C(S)}{E(S)}$ (ii) $\frac{C(S)}{R(S)}$ (iii) K_P, K_V, K_A (iv) Steady State Values if r(t)=10 u(t).</p>	CO2	PO2	10
Fig.5(a)					
	b)	Discuss the effect of PI, PD & PID Controllers.	CO2	PO2	10
UNIT - IV					
6	a)	<p>Sketch the complete Root Locus diagram for the unity feedback system having transfer function, $G(S)H(S) = \frac{K}{S(S+4)(S^2+4S+20)}$ from root locus diagram, find the following: (i) Range of K for Stability (ii) Value of gain K when the system is critically damped.</p>	CO3	PO4	10
	b)	State and explain Routh- Hurwitz criterion. What are the limitations?	CO3	PO4	05
	c)	Determine the stability of a system for the given characteristic equation, $S^4+S^3+6S^2+10S+15=0$.	CO3	PO4	05
UNIT - V					
7	a)	<p>Construct the bode plot and investigate the stability of a negative feedback control system whose open loop transfer function is given by $GH(s) = \frac{50}{S(0.5S+1)(0.05S+1)}$.</p>	CO3	PO4	10
	b)	<p>Plot the Bode diagram for the open-loop transfer function of a unity feedback system given below. $G(s) = 4/(0.1S+1)^2(0.01S+1)$. Comment on the stability of the system.</p>	CO3	PO4	10