

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

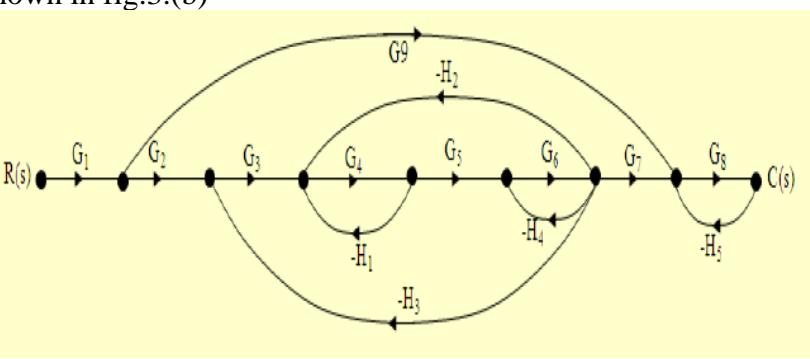
Autonomous Institute Affiliated to VTU

February 2025 Semester End Main Examinations

Programme: B.E.

Branch: Electrical and Electronics Engineering

Course Code: 23EE4ESCTH


Course: Control Theory

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Distinguish between open-loop and closed-loop control systems.	<i>CO1</i>	<i>PO1</i>	04
	b)	State the properties of non-linear systems and explain the classification of non-linear systems.	<i>CO1</i>	<i>PO1</i>	06
	c)	Explain any five applications of linear control systems.	<i>CO1</i>	<i>PO1</i>	10
OR					
2	a)	Describe on Linearization of non-linear system with an example and explain about Discrete time and Continuous time.	<i>CO1</i>	<i>PO1</i>	10
	b)	Explain the following terms with an example i) Linear systems ii) Dynamic systems iii) Dead-zone iv) Saturation	<i>CO1</i>	<i>PO1</i>	10
UNIT - II					
3	a)	Explain (i) Lead compensator (ii) Lag compensator.	<i>CO1</i>	<i>PO1</i>	10
	b)	Obtain $C(s)/R(s)$ using Mason's Gain Formula of the system shown in fig.3.(b)	<i>CO2</i>	<i>PO2</i>	10
 fig.3.b					
OR					

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

4	a)	<p>Reduce the block diagram shown in Fig 4(a) and obtain transfer function $T(s) = C(s)/R(s)$</p> <p>Fig 4(a)</p>	CO2	PO2	10
	b)	<p>Draw the F-V & F-I analogous circuits for the given mechanical system shown in Fig.4(b) and starting from the basics write the equations for both systems.</p> <p>Fig.4(b)</p>	CO2	PO2	10
UNIT - III					
5	a)	<p>Explain the necessity of controller and with a block diagram discuss on PID controller.</p>	CO2	PO2	07
	b)	<p>A control system with transfer function as $G(s)H(s) = \frac{15(s+4)(s+7)}{s(s+3)(s+6)(s+8)}$ Find the static error coefficients and steady state error of the system when input given by $r(t) = 4+t+t^2$.</p>	CO2	PO2	08
	c)	<p>Explain the Transient response specifications.</p>	CO2	PO2	05
OR					
6	a)	<p>A unity feedback system is characterized by open-loop transfer function $G(s) = \frac{K}{s(s+10)}$ Find the value of K so that the system will have a damping ratio of 0.5. For this value of K determine the settling time, peak overshoot and time to peak overshoot for unit step input.</p>	CO2	PO2	07
	b)	<p>Define the following</p> <ol style="list-style-type: none"> Rise Time 	CO2	PO2	08

* * * * *