

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

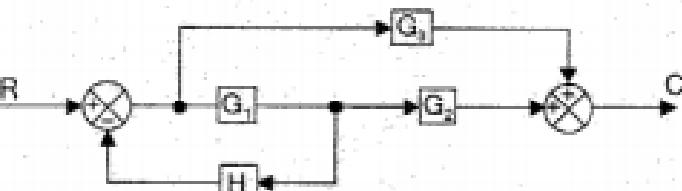
Programme: B.E.

Semester: IV

Branch: Electrical and Electronics Engineering

Duration: 3 hrs.

Course Code: 23EE4ESCTH


Max Marks: 100

Course: Control Theory

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	What are open loop systems. Give examples	<i>CO1</i>	<i>PO1</i>	05
	b)	Define the following: a. Error (e) b. Controller c. Control Signal (u) d. System e. Disturbances	<i>CO1</i>	<i>PO1</i>	05
	c)	Explain the different types of control systems.	<i>CO1</i>	<i>PO1</i>	10
OR					
2	a)	What are closed loop systems. Give examples	<i>CO1</i>	<i>PO1</i>	05
	b)	Write a short note on dead-zone and saturation.	<i>CO1</i>	<i>PO1</i>	05
	c)	Differentiate between linear and non-linear systems.	<i>CO1</i>	<i>PO1</i>	10
UNIT - II					
3	a)	Write a short note on current-voltage relation of R, L and C.	<i>CO2</i>	<i>PO2</i>	05
	b)	Discuss the rules of block diagram reduction.	<i>CO2</i>	<i>PO2</i>	05
	c)	Convert the given block diagram Fig(a) to signal flow graph and determine $C(s)/R(s)$	<i>CO2</i>	<i>PO2</i>	10
Fig (a)					

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

OR					
4	a)	Write a short note on signal flow graph	CO2	PO2	05
	b)	Discuss on the concept of Lag network, Lead network with a neat circuit	CO2	PO2	05
	c)	Reduce the block diagram shown in Fig(b) and find C/R	CO2	PO2	10
 Fig(b)					
UNIT - III					
5	a)	Write a short note on time response of a system.	CO2	PO2	05
	b)	Write a short note on different steady error constants.	CO2	PO2	05
	c)	The open loop transfer function of a servo system with unity feedback is $G(s) = 10/s(0.1s+1)$. Evaluate the static error constants of the system. Obtain the steady state error of the system, when subjected to an input given by the polynomial, $r(t) = a_0 + a_1 t + \frac{a_2}{2} t^2$	CO2	PO2	10
OR					
6	a)	Explain the step response of first order system.	CO2	PO2	05
	b)	Write a short note on steady state error.	CO2	PO2	05
	c)	A unity feedback system has the forward transfer function $G(s) = \frac{K_1(2s+1)}{s(5s+1)(1+s)^2}$ When the input $r(t) = 1+6t$, determine the minimum value of K_1 , so that the steady error is less than 0.1.	CO2	PO2	10
UNIT - IV					
7	a)	Write a short note on stability with an example.	CO3	PO3	05
	b)	Using RH criterion, determine the stability of the system represented by the characteristics equation, $s^4 + 8s^3 + 18s^2 + 16s + 5 = 0$. Comment on the location of the roots of characteristic equation	CO3	PO3	05
	c)	A unity feedback control system has an open loop transfer function, $G(s) = \frac{K}{s(s^2+4s+13)}$. Sketch the root locus.	CO3	PO3	10

OR					
	8	a)	Why is RH criterion important?	CO3	PO3 05
		b)	Write a short note on angle of asymptotes and angle of departure	CO3	PO3 05
		c)	Sketch the root locus plot for a open loop system having an transfer function. $G(s)H(s) = \frac{k}{s(s + 2)(s + 4)}$ Find the value of k so that the damping ratio of closed loop system is 0.5.	CO3	PO3 10
UNIT - V					
	9	a)	Explain in brief the frequency domain specifications.	CO4	PO4 05
		b)	Explain the importance of Phase Margin.	CO4	PO4 05
		c)	Construct Bode magnitude for $G(s) = \frac{200(s+1)}{(s+10)^2}$	CO4	PO4 10
OR					
	10	a)	Explain the importance of Gain Margin.	CO4	PO4 05
		b)	Write a short note on stability margins	CO4	PO4 05
		c)	Construct the bode magnitude plot of the transfer function $G(s) = \frac{200(s + 2)}{s(s^2 + 10s + 100)}$	CO4	PO4 10
