

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Semester: IV

Branch: Electrical and Electronics Engineering

Duration: 3 hrs.

Course Code: 23EE4ESCTH

Max Marks: 100

Course: Control Theory

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Define the following: (i) System (ii) Control System (iii) Controller (iv) Disturbances (v) Reference input and Control output	CO1	-	05
	b)	Compare open loop and closed loop control systems	CO1	-	05
	c)	Explain any five applications of linear control systems	CO1	-	10
UNIT - II					
2	a)	What are the advantages of transfer System?	CO2	PO1	05
	b)	Find out the transfer function of network given in Fig.1	CO2	PO2	05
		<p>Fig.1</p>			
	c)	Using Mason's gain formula, obtain the transfer function for the given Fig.2(c)	CO2	PO2	10
		<p>Fig.2(c)</p>			

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

OR					
3	a)	What are the procedures to determine the transfer function of a control system?	CO2	PO1	05
	b)	What are the properties of signal flow graph	CO2	PO1	05
	c)	Reduce the given block diagram (as shown in Fig.3) to its canonical (simple) form and obtain the equivalent transfer function $\frac{C(s)}{R(s)}$	CO2	PO2	10
Fig.3					
UNIT - III					
4	a)	Define the following (i) Time constant (ii) Rise time (iii) Settling time (iv) Natural Frequency (v) Damping ratio	CO2	PO2	05
	b)	Explain steady state error and give the error constant values for different standard inputs.	CO2	PO2	05
	c)	A unity feedback control system is characterized by an open loop transfer function $G(s)H(s) = \frac{K}{s(s+10)}$. Determine the system gain K so that the system will have the damping ratio of 0.5	CO2	PO2	10
OR					
5	a)	Find the step response $c(t)$ for a system described by $G(s) = \frac{4}{s+4}$. Also find the time constant, rise time and settling time	CO2	PO2	05
	b)	Discuss the effect of Proportional Controller (P-Controller) in modifying the error signal and to achieve better control system.	CO2	PO2	05
	c)	Explain the underdamped case of second order systems.	CO2	PO2	10
UNIT - IV					
6	a)	Describe the significance of RH criterion	CO3	PO4	05
	b)	Investigate the stability of a closed-loop system whose characteristic equation is given by, $s^5 + s^4 + 2s^3 + 2s^2 + 3s + 5 = 0$	CO3	PO4	05

	c)	<p>Sketch the root locus plot for a closed loop system having an open-loop transfer function,</p> $G(s)H(s) = \frac{k(s+2)}{s(s+1)}$ <p>for all values of k from 0 to ∞. Comment on the stability of the system. Also, show that a part of the root locus is a circle.</p>	CO3	PO4	10
		UNIT - V			
7	a)	Explain in brief the frequency domain specifications.	CO3	PO4	05
	b)	Explain the importance of Gain Margin.	CO3	PO4	05
	c)	<p>Construct Bode magnitude and phase diagrams for</p> $GH(s) = \frac{100(0.1s+1)}{s(s+1)^2(0.01s+1)}$ <p>Comment on the closed-loop stability of the system</p>	CO3	PO4	10
