

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

Programme: B.E.

Branch: Electrical and Electronics Engineering

Course Code: 22EE4PCGTD

Course: Generation, Transmission and Distribution

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Draw the typical block diagram for hydroelectric power plant and explain its parts in brief.	CO1	PO1	07
	b)	Explain the following terms: a) Demand Factor b) Load Factor c) Diversity Factor.	CO1	PO1	06
	c)	Derive & analyze the equation for sag when the conductor is supported between two poles at the same level.	CO2	PO2	07
OR					
2	a)	Explain the different methods to improve the power factor?	CO1	PO2	05
	b)	Derive & analyse the equation for sag when the conductor is supported between two poles at unequal levels.	CO1	PO2	07
	c)	A transmission line has a span of 275 m between level supports. The conductor has an effective diameter of 1.96 cm and weighs 0.865 kg/m. Its overall strength is 8060 kg. If the conductor has ice coating of radial thickness 1.27 cm and is exposed to a wind pressure of 3.9 gm/cm ² of projected surface, compute sag for a safety factor of 2. Weight of 1 c.c. of ice is 0.91 gm.	CO1	PO2	08
UNIT - II					
3	a)	Discuss on enhancing string efficiency by grading the insulators.	CO2	PO1	04
	b)	Develop an expression for inductance (internal flux & external flux) of a single phase two wire system.	CO2	PO1	08
	c)	Develop an expression for capacitance of three phase overhead line with unsymmetrical spacing.	CO2	PO1	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III					
4	a)	Analyse and develop an expression for ABCD constants of medium transmission line using Nominal- Pai (π) method. Also draw the phasor diagram.	CO4	PO2	10
	b)	A three phase ,50 Hz overhead transmission line,100KM long delivers 20MW at 0.9 power factor lagging & at 110KV. The resistance & reactance of the line per phase per KM are 0.2Ω & 0.4Ω respectively, while capacitive admittance $=2.5 \times 10^{-6} \Omega/KM$ (mho/KM). Evaluate (i) voltage, & current at sending end, and (ii) Efficiency of transmission for this load using nominal T-method.	CO4	PO2	10
UNIT - IV					
5	a)	Discuss about the Factors Influencing Corona.	CO2	PO1	06
	b)	Explain the general construction - cross-section of a single core cable with the help of neat sketch.	CO2	PO1	06
	c)	Develop an expression for potential gradient in a single core cable.	CO2	PO2	08
UNIT - V					
6	a)	With a neat diagram explain the elements of DC distribution systems.	CO3	PO1	08
	b)	Derive an expression for concentrated load fed at one end for DC distribution system.	CO3	PO1	06
	c)	Derive an expression for A.C distributors with concentrated loads of: Power Factors referred to respective load voltages.	CO3	PO1	06
OR					
7	a)	Derive an expression for DC distributor fed at both the ends with unequal voltages and concentrated loading.	CO3	PO2	08
	b)	What are the factors considered for site selection of sub-station and also compare outdoor sub-station with indoor sub-station.	CO3	PO1	06
	c)	Discuss on methods of neutral earthing and importance of neutral grounding	CO3	PO1	06
