

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Electrical and Electronics Engineering

Duration: 3 hrs.

Course Code: 23EE4PCGTD / 22EE4PCGTD

Max Marks: 100

Course: Generation, Transmission and Distribution

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Draw the typical block schematic diagram for solar electric generating System and explain in brief.			<i>CO1</i>	<i>PO1</i>	07
		b)	Explain the following terms: Demand Factor; Load Factor; Diversity Factor.			<i>CO1</i>	<i>PO1</i>	06
		c)	Derive & analyses the equation for sag when the conductor is supported between two poles at the same level.			<i>CO1</i>	<i>PO2</i>	07
	OR							
	2	a)	Draw the typical block schematic diagram for thermal power plant and explain in brief.			<i>CO1</i>	<i>PO2</i>	07
		b)	Derive & analyze the equation for sag when the conductor is supported between two poles at the same level			<i>CO1</i>	<i>PO2</i>	06
		c)	A transmission line uses a copper of wire 200 mm^2 with conductor configuration 54+7/2.24 mm. The span of the line 160 m with the supports are at same level. The man stress in the conductor is 41 kg/mm^2 with F.S 5. Evaluate: i). Sag in still air; ii). Sag with wind load of 1.55 kg and ice coating of 1.25mm; iii). Vertical sag as in case (2). Assume current density as 8.9gm/cc			<i>CO1</i>	<i>PO2</i>	07
	UNIT - II							
	3	a)	A string of 8 suspension insulator is to be fitted with a guard ring. If the pin to earth capacitances are all equal to C , derive the general expression for the line to pin capacitor in terms of n , c and p . where p is number of pins, so as to give uniform voltage distribution over the string. If there are 8 suspension insulators, using the expression derived, obtain the values of all line to pin capacitances.			<i>CO2</i>	<i>PO2</i>	10
		b)	Develop an expression for inductance (internal flux & external flux) of a single phase two wire system.			<i>CO2</i>	<i>PO1</i>	10
OR								

	4	a)	Derive an expression for inductance of three phase line with unsymmetrical spacing but transposed.	CO2	PO2	10
		b)	Discuss on ways of enhancing string efficiency and explain in brief	CO2	PO1	10
UNIT - III						
	5	a)	Analyses and develop an expression for ABCD constants of medium transmission line using Nominal-T method. Also draw the phasor diagram.	CO4	PO2	10
		b)	A three phase, 50 Hz overhead transmission line, 100 km long delivers 25 MW at 0.85 p.f lagging & at 110 kV. The resistance & reactance of the line per phase per km are 0.3Ω (ohm) & 0.9Ω (ohm) respectively, while capacitive admittance $= 0.3 \times 10^{-6} \text{ S/km}$ (mho/km). Evaluate (i) Voltage regulation & (ii) Efficiency of transmission for this load using nominal (Pi) method.	CO4	PO2	10
OR						
	6	a)	Analyses and develop an expression for ABCD constants of medium transmission line using Nominal-pi method. Also draw the phasor diagram.	CO4	PO2	10
		b)	A three phase, 50 Hz overhead transmission line, 30 km long delivers 10 MW at 0.85 p.f lagging & at 11 kV. The resistance & reactance of the line per phase per km are 0.3Ω (ohm) & 0.9Ω (ohm) respectively, while capacitive admittance $= 0.3 \times 10^{-6} \text{ S/km}$ (mho/km). Evaluate (i) Voltage regulation & (ii) Efficiency of transmission line.	CO4	PO2	10
UNIT - IV						
	7	a)	Define Grading of cables and develop an expression for the ratio of gradient with & without inter sheath is $\frac{2}{1+\alpha}$, when there is only one layer with one inter sheath.	CO2	PO1	10
		b)	Single core lead covered cable is to be designed for 66 kV to earth. Its conductor radius 10 mm and its three insulating materials have relative permittivity of 5, 3 & 4 respectively and the cross-pounding man permissible stress of 3.5, 2.5, 1.8 kV/mm (rms value) respectively. Evaluate the minimum diameter of lead sheath.	CO2	PO2	10
OR						
	8	a)	Discuss on Factors Influencing Corona and Corona Benefits and Disadvantages	CO2	PO1	10

	b)	A single core cable has a conductor diameter of 3.5 cm and a sheath of inside diameter 5 cm. Evaluate the maximum stress. It is desire to reduce the maximum stress by two inter sheaths and also evaluate their best position of man stress and voltage on each system. Voltage is 33 kV three phase (rms value)	CO2	PO2	10										
		UNIT - V													
9	a)	Explain with neat diagram for Elements of DC distribution systems (schematic diagram of LT DC distribution systems).	CO3	PO1	06										
	b)	Derive the expression for A.C distributors with concentrated loads of referring power factor: Power Factors referred to respective load voltages	CO3	PO1	06										
	c)	A two-conductor street main 'AB', 500 meters in length is fed from both ends at 250 V. Loads of 50A,60A,40A &30A are tapped at distance of 100m, 250m, 350m & 400m from 'A' respectively. If the cross-section of the conductor be 1cm^2 and specific resistivity of the martial of conductor is 1.7 micro ohm-cm. Evaluate the minimum consumer voltage.	CO3	PO2	08										
		OR													
10	a)	A DC two-line Distributor 'AB', is fed at both ends at voltage of 220V & 225V respectively. the length of distributor is 225m and loads tapped off from the end A are: <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>Distance in meter</td> <td>50</td> <td>75</td> <td>100</td> <td>125</td> </tr> <tr> <td>Load in amps</td> <td>20</td> <td>40</td> <td>25</td> <td>35</td> </tr> </table> The resistance per kilometer of both distributor is 0.3 ohm. Evaluate: (i). The current in each section and (ii). The voltage at the point of minimum potential.	Distance in meter	50	75	100	125	Load in amps	20	40	25	35	CO3	PO2	08
Distance in meter	50	75	100	125											
Load in amps	20	40	25	35											
	b)	What are the factors considered for site selection of sub-station and also comparison of outdoor sub-station & indoor sub-station?	CO3	PO1	06										
	c)	Discuss on methods of neutral earthing and importance of neutral grounding	CO3	PO1	06										
