

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

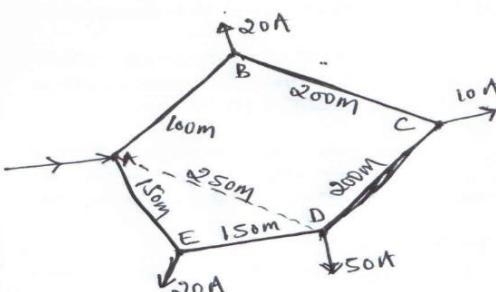
Semester: IV

Branch: Electrical and Electronics Engineering

Duration: 3 hrs.

Course Code: 23EE4PCGTD / 22EE4PCGTD

Max Marks: 100


Course: Generation, Transmission and Distribution

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Draw the typical schematic block diagram of an hydroelectric power plant and explain in brief.	CO1	PO1	07
	b)	Explain the following terms: Demand Factor; Load Factor; Diversity Factor.	CO1	PO1	06
	c)	A transmission line has a span of 200 meters between level supports. The conductor has a cross-sectional area of 1.29 cm^2 , weighs 1170 kg/km and has a breaking stress of 4218 kg/cm^2 . Find the sag for a safety factor of 5, allowing a wind pressure of 122 kg per square meter of projected surface. Calculate the vertical sag.	CO1	PO2	07
OR					
2	a)	What are the methods of power factor improvement? A 500 V , 60 cycles/seconds single phase motor takes a full load current of 50 A at P.F 0.86 lagging. The motor power factor has to be improved to 0.94 by connecting capacitor bank across it. Calculate the required capacity of capacitor in both kVAR and $\mu\text{-Farads}$?	CO1	PO2	05
	b)	Derive and analyze the equation for sag when the conductor is supported between two poles at the unequal level.	CO1	PO2	07
	c)	A transmission line has a span of 275 m between level supports. The conductor has an effective diameter of 1.96 cm and weighs 0.865 kg/m . Its overall strength is 8060 kg . If the conductor has ice coating of radial thickness 1.27 cm and is exposed to a wind pressure of 3.9 gm/cm^2 of projected surface, compute sag for a safety factor of 2. Weight of 1 c.c. of ice is 0.91 gm .	CO1	PO2	08
UNIT - II					
3	a)	Discuss on methods of enhancing string efficiency and explain in brief.	CO2	PO1	05

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Develop an expression for inductance (internal flux & external flux) of a single phase two wire system.	CO2	PO1	07
	c)	Develop an expression for capacitance of three phase overhead line with unsymmetrical spaced line.	CO2	PO1	08
		OR			
4	a)	Show that the voltage distribution across the units of a string insulator is not uniform.	CO2	PO1	06
	b)	How transmission line is classified and mention the importance of ABCD parameters?	CO2	PO1	06
	c)	Develop an expression for capacitance of 3-phase overhead lines of unsymmetrical line with transposed conductors.	CO2	PO1	08
		UNIT - III			
5	a)	Analyze and develop an expression for ABCD constants of medium transmission line using Nominal-Pai (Π) method. Also draw the phasor diagram.	CO4	PO2	10
	b)	A three phase, 50 Hz overhead transmission line has the following constants: Resistance = 28Ω (ohm), Inductive reactance = 63Ω (ohm) and capacitive susceptance = $4 \times 10^{-4} \text{ S}$ (mho). If the load at receiving end is 75 MVA at 0.8 p.f. lagging with 132 kV between lines, Evaluate (i). Voltage, (ii). Current, (iii). Power factor at sending end, (iv). Regulation and (v). Efficiency of transmission for this load using nominal T-method.	CO4	PO2	10
		OR			
6	a)	Analyze and develop an expression for short transmission line with draw the phasor diagram.	CO4	PO2	08
	b)	Analyze and develop an expression for ABCD constants of long transmission line using rigorous method.	CO4	PO2	12
		UNIT - IV			
7	a)	Discuss the methods of decreasing Corona effect. Also mention its advantages and disadvantages.	CO2	PO1	06
	b)	Define Grading of cables and show that the ratio of gradient with and without inter sheath is $\frac{3}{1+1+a^2}$, when there is only TWO layers.	CO2	PO1	08
	c)	A single core cable has a conductor diameter of 2.5 cm and a sheath of inside diameter 6 cm. Evaluate the maximum stress. It is desire to reduce the maximum stress by two inter sheaths and also evaluate their best position of, man stress & voltage on each system. Voltage is 66 kV three phase.	CO2	PO2	06
		OR			
8	a)	A 132 kV line with 1.956 cm diameter conductors is built so that corona happens if the line voltage surpasses 210 kV (RMS). If the	CO2	PO1	06

		value of potential gradient at which ionization happens can be taken as 30 kV per cm, calculate the conductor spacing.													
	b)	Define Grading of cables and show that the ratio of gradient with & without inter sheath is $\frac{2}{1+\alpha}$, when there is only one layer.	CO2	PO1	08										
	c)	Analyses and develop an expression for power factor and power losses in the dielectric of a single core cable.	CO2	PO2	06										
		UNIT - V													
9	a)	Explain with neat diagram for DC distribution systems of according to scheme of connection	CO3	PO1	06										
	b)	Derive the expression for A.C distributors with concentrated loads of referring power factor: Power Factors referred to respective load voltages	CO3	PO1	06										
	c)	A DC two-line Distributor 'AB', is fed at both ends at same voltage of 220 V and 225 V respectively. the length of distributor is 225 m and loads tapped off from the end F1 are: <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>Distance in meter</td> <td>50</td> <td>75</td> <td>100</td> <td>125</td> </tr> <tr> <td>Load in amps</td> <td>20</td> <td>40</td> <td>25</td> <td>35</td> </tr> </table> <p>The resistance per kilometer of both distributors is 0.3 ohm. Evaluate: (i). The current in each section and (ii). The voltage at the point of minimum potential.</p>	Distance in meter	50	75	100	125	Load in amps	20	40	25	35	CO3	PO2	08
Distance in meter	50	75	100	125											
Load in amps	20	40	25	35											
		OR													
10	a)	For the same voltage drop between the supply point 'A' and load point 'D' in the network shown below, compare the weights of copper required with & without an interconnector between 'A' & 'D'. Conductor has the cross-sectional in each scheme.	CO3	PO2	08										
	b)														
	c)	What are the factors considered for site selection of sub-station and also comparison of outdoor sub-station and indoor sub-station?	CO3	PO1	06										
		Discuss on methods of neutral earthing and importance of neutral grounding.	CO3	PO1	06										