

--	--	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Electrical and Electronics Engineering

Duration: 3 hrs.

Course Code: 23EE4PCGTD

Max Marks: 100

Course: Generation, Transmission and Distribution

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Define the following terms: i) Demand factor, ii) Load factor, iii) Diversity factor and iv) Load curve.	CO1	PO1	04
	b)	Draw the typical block schematic diagram for solar electric generating System and explain in brief.	CO1	PO1	08
	c)	Briefly explain any two methods of power factor improvement in electric power system.	CO1	PO1	08
OR					
2	a)	Define sag? Give the advantages of high voltages for transmission.	CO1	PO1	04
	b)	Derive & analyze the equation for sag when the conductor is supported between two poles at the same level	CO1	PO1	08
	c)	A transmission line has a span of 275m between level supports. The conductor has an effective diameter of 1.96cm and weighs 0.865kg/m. Its ultimate strength is 8060kg. If the conductor has ice coating of radial thickness 1.27cm and is subjected to a wind pressure of 3.9gm/cm ² of projected area, calculate sag for a safety factor of 2. Weight of 1c.c of ice is 0.91gm.	CO1	PO2	08
UNIT - II					
3	a)	Explain any two methods used for improving string efficiency of an insulator.	CO2	PO1	04
	b)	A string of 4 insulators is connected across a 285kV line. The self-capacitance of each unit is equal to 5 times the pin to earth capacitance. Calculate the potential difference across each unit and the string efficiency.	CO2	PO2	08
	c)	The conductors of a three-phase 66kV, 50Hz, 100km long overhead line are transposed. The diameter of the conductor is 2.5cm. The conductors are placed such that D ₃₁ = 5m, D ₁₂ = 2.5m and D ₂₃ = 2.5m. Determine, i) inductance per phase, ii) capacitance per phase and iii) charging current per phase.	CO2	PO2	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III															
4	a)	Analyses and develop an expression for ABCD constants of medium transmission line using Nominal-T method. Also draw the phasor diagram.	CO4	PO2	10										
	b)	A three phase, 50 Hz overhead transmission line, 150KM long delivers 25MW at 0.85 p.f lagging & at 110KV. The Resistance & reactance of the line per phase per KM are 0.3Ω (ohm)& 0.9Ω (ohm) respectively, while capacitive admittance $=0.3 \times 10^{-6} \text{ S/KM}$ (mho/KM). Evaluate (i).Voltage regulation & (ii)Efficiency of transmission for this load using nominal (Pi) method.	CO4	PO2	10										
UNIT - IV															
5	a)	Discuss on Factors Influencing Corona and Corona Benefits and Disadvantages	CO2	PO1	06										
	b)	Define Grading of cables and Develop an expression for the ratio of gradient with & without inter sheath is $\frac{2}{1+\alpha}$, when there is only one layer with one inter sheath.	CO2	PO1	08										
	c)	Single core lead covered cable is to be designed for 66Kv to earth. Its conductor radius 10mm and its three insulating martials have relative permittivity 5, 3 & 4 respectively and the cross ponding man permissible stress of 3.5, 2.5, 1.8 KV/mm(rms value)respectively. Evaluate the minimum diameter of lead sheath.	CO2	PO2	06										
UNIT - V															
6	a)	Write a short note on, i) Radial distribution system and ii) Ring main distribution system.	CO3	PO1	08										
	b)	A 2 wire DC distributor AB 200m long is fed from feeding point 'A' at 230V and 'B' at 235V. The following loads are tapped off as follows: 25A at 50m from A, 45A at 75m from A, 30A at 100m from B, 40A at 50m from B. The resistance of each conductor is $0.3\Omega/\text{km}$. Calculate the current in all the sections, minimum voltage and the point at which it occurs.	CO3	PO2	12										
OR															
7	a)	What are the different methods used for calculating AC distribution problems.	CO3	PO1	04										
	b)	A DC two-line Distributor 'AB, is fed at both ends at voltage of 220V & 225V respectively. the length of distributor is 225m and loads tapped off from the end A are:	CO3	PO2	10										
		<table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td>Distance in meter</td><td>50</td><td>75</td><td>100</td><td>125</td></tr> <tr> <td>Load in amps</td><td>20</td><td>40</td><td>25</td><td>35</td></tr> </table> <p>The resistance per kilometer of both distributor is 0.3 ohm. Evaluate: (i).The current in each section and (ii).The voltage at the point of minimum potential.</p>	Distance in meter	50	75	100	125	Load in amps	20	40	25	35			
Distance in meter	50	75	100	125											
Load in amps	20	40	25	35											
	c)	Differentiate between earthing and grounding.	CO3	PO1	06										