

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Semester End Main Examinations

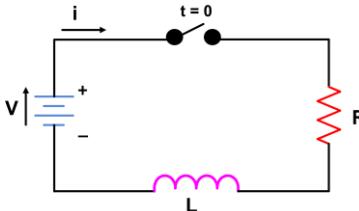
Programme: B.E.

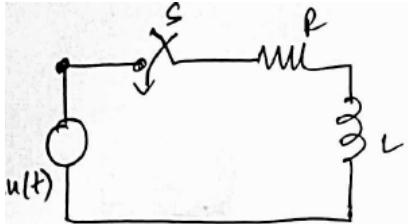
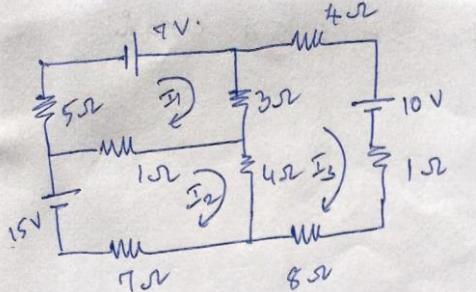
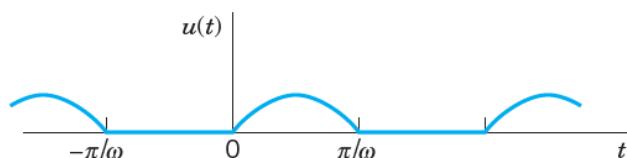
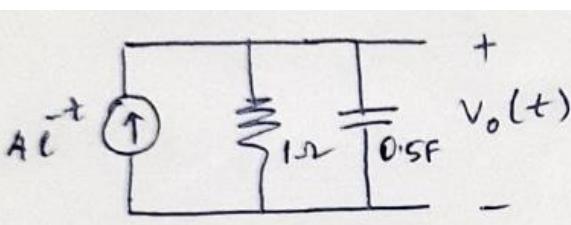
Branch: Electrical and Electronics Engineering

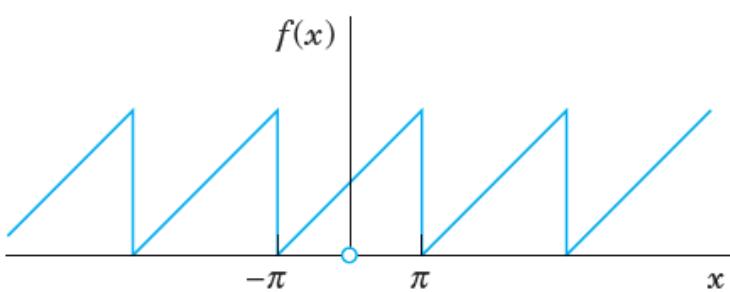
Course Code: 23EE4BSMAE

Course: Mathematical Applications to Electrical Systems

Semester: IV


Duration: 3 hrs.





Max Marks: 100


Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Solve for $q(t)$ for an RC series circuit supplied with a voltage source of 50 V using Eulers method. Construct a table with five values. $R = 10 \Omega$, $C = 1 \mu\text{F}$, Step size = 0.1.	CO1	PO1	07
	b)	Find the solution of IVP, $y' = x + y$, $y(0) = 0$ from 0.2 to 1 with a step size of 0.2.	CO2	PO3	07
	c)	Consider an RL circuit with a source voltage $V = 100 \text{ V}$ and initial current $I(0) = 0$. Find the current $I(t)$ for $t \geq 0$ using Bernoulli equation when, $R = 50 \Omega$; $L = 1 \text{ H}$.	CO2	PO3	06
UNIT - II					
2	a)	A series circuit consists of $R = 20 \Omega$, $L = 1 \text{ H}$, $C = 0.002 \text{ F}$, $E = 12 \sin 10t$. The initial charge and current are 0. Find the charge and current at $t > 0$.	CO2	PO3	10
	b)	Briefly explain the method of undetermined coefficients to solve nonhomogeneous ODE.	CO1	PO1	10
OR					
3	a)	Solve the IVP $y'' + 3y' + 2.25y = -10e^{-1.5x}$. Given $y(0) = 1$, $y'(0) = 0$	CO2	PO3	10
	b)	Derive the equation for general solution of Euler Cauchy equation when the roots are complex conjugate.	CO1	PO1	10
UNIT - III					
4	a)	Find Laplace transform of e^{at} and $e^{at} \cos \omega t$.	CO1	PO1	06
	b)	Solve the initial value problem using Laplace Transform: $y'' - y = t$, $y(0) = 1$, $y'(0) = 1$.	CO2	PO3	07

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	<p>For the circuit shown, find the expression for current when the switch is closed at $t=0$. The circuit is excited by unit step input. Assume zero initial current.</p>	CO2	PO3	07
		UNIT - IV			
5	a)	<p>Solve the linear system given by its augmented matrix.</p> $\begin{array}{l} 10x + 4y - 2z = -4 \\ -3w - 17x + y + 2z = 2 \\ w + x + y = 6 \\ 8w - 34x + 16y - 10z = 4 \end{array}$	CO2	PO3	10
	b)	<p>Find Eigen values and Eigen vectors for the circuit shown.</p>	CO2	PO3	10
		UNIT - V			
6	a)	<p>Obtain Fourier series for the output of a half wave rectifier circuit which clips the negative portion of the input sinusoidal wave $ESin\omega t$.</p> $u(t) = \begin{cases} 0 & \text{if } -L < t < 0, \\ E \sin \omega t & \text{if } 0 < t < L \end{cases}$	CO2	PO3	10
	b)	<p>Find the voltage V_0 in the circuit shown using Fourier Transform method.</p>	CO2	PO3	10

OR					
7	a)	Find the Fourier series of the function $f(x) = x + \pi$ if $-\pi < x < \pi$	<i>CO1</i>	<i>PO1</i>	10
	b)	 Obtain 4 point DFT of the sequence $x(n) = \{1, 2, 2, 1\}$	<i>CO2</i>	<i>PO3</i>	10
