

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

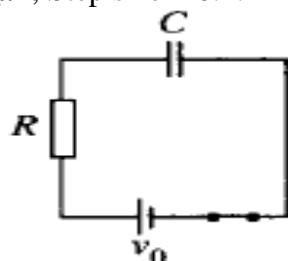
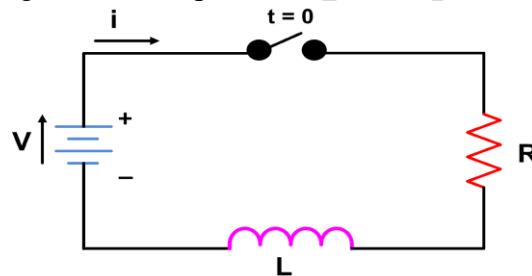
Programme: B.E.

Semester: IV

Branch: Electrical and Electronics Engineering

Duration: 3 hrs.

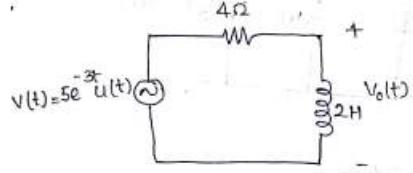
Course Code: 23EE4BSMAE



Max Marks: 100

Course: Mathematical Applications to Electrical Systems

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Define ODE. Differentiate between homogeneous and non-homogeneous ODE. Give example for each.	CO1	PO1	05
	b)	Consider an RL with $R = 100 \Omega$ and $L = 1\text{mH}$ circuit with a source voltage $V = 100 \text{ V}$ and initial current $I(0) = 0$. Find the current $I(t)$ for $t > 0$ using Bernoulli equation.	CO1	PO1	08
	c)	Find the solution of IVP using Eulers method for $x = 0$ to 1.0 , $y' = y + x$, $y(0) = 0$, $h = 0.2$.	CO1	PO1	07
OR					
2	a)	The RC circuit in Figure is initially relaxed and is closed at time $t=0$. Write the differential equation for the circuit and find the solution equation for charge after the switch is closed at $t=0$. Construct a table of solutions using Eulers method with five values for $R = 100 \Omega$, $C = 1\mu\text{F}$, Step size = 0.1.	CO1	PO1	10


Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	<p>Find the output voltage expression for the filter circuit shown using Bernoulli's equation when, (i) $R = 159 \Omega$, $C = 0.1 \text{ F}$ (ii) $R = 10\text{k} \Omega$, $C = 0.36 \text{ F}$. Given $v_s(t) = 10 \text{ V}$</p>	CO1	PO1	10
UNIT - II					
3	a)	Briefly explain the method of undetermined coefficients to solve nonhomogeneous ODE.	CO1	PO1	10
	b)	For the series RLC circuit shown in fig, switch is opened at $t=0$. Find the expression for current and charge in the circuit at $t>0$. $I(0) = 0$ and $I'(0) = 10 \text{ A}$.	CO1	PO1	10
 OR					
4	a)	Verify by substitution that the functions $y = x^2$ and $y=1$ are solutions of the nonlinear ODE $y''-xy'=0$, but their sum is not a solution.	CO1	PO1	08
	b)	Explain the method of obtaining solution for linear homogeneous second order ODEs with constant coefficients.	CO1	PO1	12
UNIT - III					
5	a)	Solve the IVP using Laplace Transform. $y''+7y'+12y=21e^{3t}$, $y(0)=3.5$, $y'(0) = -10$	CO1	PO1	07
	b)	A DC voltage of 3V is applied to an RC circuit with $R = 2000_\Omega$ and $C = 0.001 \text{ F}$, where $q(0) = 0$. Find the voltage across the capacitor as a function of t using Laplace transformation method.	CO1	PO1	07
	c)	Find the Laplace transform of (i) $\cos(at)$ (ii) $\sin(at)$	CO2	PO2	06
OR					
6	a)	For the series RLC circuit shown, find the expression for charge and current in the circuit using Laplace transformation. Initial current and charge is zero.	CO2	PO1	10

	b)	Find Laplace transform of (i) first and second derivatives of $y(t)$ and integral of $y(t)$.	CO1	PO1
UNIT - IV				
7	a)	Find the branch currents for the circuit shown using Gaussian Elimination method.	CO1	PO2
	b)	For the circuit shown, find the Eigen values and Eigen vectors. Given, $C = 2/3$, $R_1 = 1$, $R_2 = 3/5$ and $L = 2$.	CO1	PO2
OR				
8	a)	Find Eigen values and Eigen vectors for the circuit shown.	CO1	PO1
	b)	Solve the linear system using gauss elimination method	CO1	PO1
		$4y + z = 0$ $12x - 5y - 3z = 34$ $-6x + 4z = 8$		
UNIT - V				
9	a)	Find Fourier series for $f(x) = \begin{cases} x & 0 < x < 1 \\ 1 - x & 1 < x < 2 \end{cases}$	CO2	PO2

	b)	Obtain 4 point DFT of the sequence $x(n) = \{1, 1, 0, 0\}$	CO1	PO1	10
		OR			
10	a)	Find half range cosine series for $f(x) = x \sin x$ in the range $(0, \pi)$.	CO2	PO1	08
	b)	Describe the properties of Fourier transforms.	CO1	PO1	07
	c)	For the circuit shown, find the output voltage $V_o(t)$ using Fourier Transforms.	CO2	PO1	05

B.M.S.C.E. - EVEN SEM 2024-25