

B.M.S. College of Engineering, Bengaluru-560019

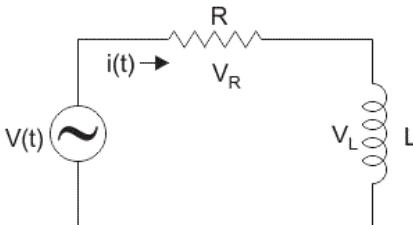
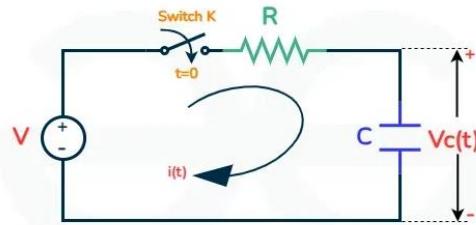
Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

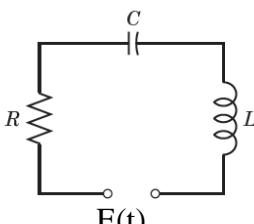
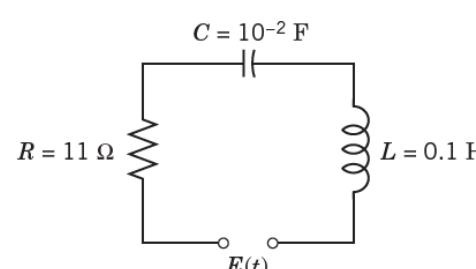
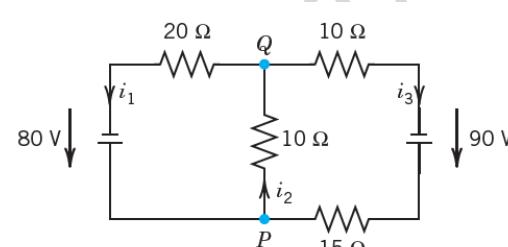
Programme: B.E.

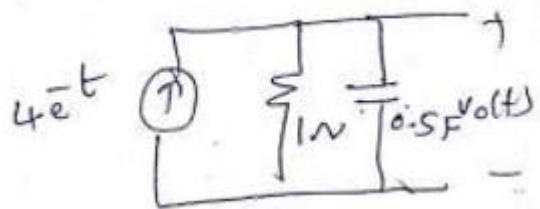
Branch: Electrical and Electronics Engineering

Course Code: 23EE4BSMAE



Course: Mathematical Applications to Electrical Systems

Semester: IV




Duration: 3 hrs.


Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Use Eulers method to construct a table of ten approximate values for $i(t)$ in the circuit shown. $R = 10 \Omega$, $L = 0.1H$. Use step size = 0.1.	CO2	PO3	10
UNIT - II					
2	a)	Arrive at an expression for the voltage across the capacitor using Bernoulli equation, when $V(0)=0$.	CO2	PO3	10
	b)				
OR					
3	a)	Solve the IVP $y'' + y = 0.001x^2$. Given $y(0)=0$, $y'(0)=1.5$.	CO2	PO3	10
	b)	Arrive at an expression for solution of linear homogeneous second order ODE with constant coefficients when real double root occurs.	CO1	PO1	10
3	a)	State and prove superposition theorem for the homogeneous linear ODE.	CO1	PO1	05
	b)	Verify by substitution that the functions $y = x^2$ and $y = 1$ are solutions of the nonlinear ODE $y'' - xy' = 0$, but their sum is not a solution.	CO2	PO3	05

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	<p>Find the steady-state current in the RLC-circuit shown for the given data. $R = 4 \Omega$, $L = 0.1\text{H}$, $C = 0.05\text{F}$, $E = 110 \text{ V}$. Initial current and charge is zero.</p>	CO2	PO3	10
		UNIT - III			
4	a)	<p>Find Laplace transform of $\cos\omega t$ and $\sin\omega t$.</p>	CO1	PO1	06
	b)	<p>Find the response (the current) of the RLC-circuit shown, where $E(t) = 100 \sin 400t$ and current and charge are initially zero.</p>	CO2	PO3	10
	c)	<p>Find Laplace transform of first derivative of $y(t)$.</p>	CO1	PO1	04
		UNIT - IV			
5	a)	<p>Obtain all the branch currents for the circuit shown using Gauss Elimination method.</p>	CO2	PO3	10
	b)	<p>Find Eigen values and Eigen vectors for the matrix:</p> $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}.$	CO2	PO3	10
		UNIT - V			
6	a)	<p>Find the Fourier series of the function $f(x) = 3x^2$, for $0 < x < 2\pi$.</p>	CO2	PO3	10
	b)	<p>Compute 4 point DFT of the sequence $x(n) = \{1, 1, 1, 0\}$</p>	CO2	PO3	10
		OR			
7	a)	<p>The current supplied by the source in the figure is $i(t) = 4e^{-t}$. Find the voltage V_0 using Fourier transform method.</p>	CO2	PO3	10

b) Find half-range cosine expansion of the function.

$$f(x) = \begin{cases} \frac{2k}{L}x & \text{if } 0 < x < \frac{L}{2} \\ \frac{2k}{L}(L - x) & \text{if } \frac{L}{2} < x < L. \end{cases}$$

CO1

PO1

10
