

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

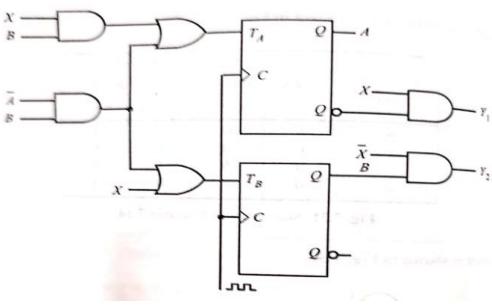
Semester: V

Branch: Electrical and Electronics Engineering

Duration: 3 hrs.

Course Code: 23EE5PE1DS

Max Marks: 100


Course: Digital system design using Verilog

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Explain the different design methodologies employed in Verilog. Give their merits and demerits	CO1	PO1	06
	b)	What are the different data types available in Verilog?	CO1	PO1	08
	c)	Given $X=4'b1011, Y=4'b1001$ and $Z=4'b1110$, then the output of the following statements are: 1. $X Z$ 2. $&Y$ 3. \sim^Z 4. $X >> 2$ 5. $\{X, \{2\{2'b10\}\}\}$	CO1	PO1	06
OR					
2	a)	Depict the typical ASIC design flow with the help of appropriate flow diagram.	CO1	PO1	06
	b)	What are the different data operators available in Verilog?	CO1	PO1	08
	c)	For the following Verilog code segment: wire[7 : 0] A; wire B; assign B = ^A; if the value of A is 8'b 10110011, What will be the value of $\{A[4:3], 3\{B\}\}$?	CO1	PO1	06
UNIT - II					
3	a)	Use structural modeling to design and write a Verilog code to implement a 3-bit magnitude comparator taking appropriate instances of full adders.	CO3	PO3	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Using generate statements, write a Verilog code for an n-bit ripple carry adder.	CO3	PO3	10																										
		OR																													
4	a)	Use structural modeling to Write Verilog code to implement the functionality of Master –Slave JK Flip flop	CO3	PO3	10																										
	b)	Write a data flow model for 2:4 Decoder with an active low enable E and an active low output line w.	CO3	PO3	10																										
		UNIT - III																													
5	a)	Design and also Write a Verilog behavioural code to implement a BCD Adder.	CO3	PO3	06																										
	b)	With relevant examples, bring out the difference between <ul style="list-style-type: none"> i) Blocking and non- blocking statements ii) Initial and always blocks 	CO3	PO3	06																										
	c)	Write a behavioural code to represent the functionality of a n-bit shift register having a serial input data D, parallel data P and active high clock input.	CO3	PO3	08																										
		OR																													
6	a)	Develop a Verilog code to realize the functionality of a 4:16 decoder having an enable En, data input w, using 2:4 decoders.	CO3	PO3	06																										
	b)	Design and develop a behavioural Verilog code to implement the functionality of a 3-bit synchronous Down counter.	CO3	PO3	06																										
	c)	Write a hierachial code that can perform shift operation of a 4-bit data in parallel / serial fashion. Use multiplexers.	CO3	PO3	08																										
		UNIT - IV																													
7	a)	Develop a state diagram, state assigned table represented by the following state table. Use T flip flops for FF-2 and D flip flops for FF1. Also write a Verilog code.	CO3	PO3	10																										
		<table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th rowspan="2">PS</th> <th colspan="2">NS</th> <th rowspan="2">Output</th> </tr> <tr> <th>$w=0$</th> <th>$w=1$</th> </tr> </thead> <tbody> <tr> <td>y_2y_1</td> <td>$T2D1$</td> <td>$T2D1$</td> <td>z</td> </tr> <tr> <td>A</td> <td>A</td> <td>B</td> <td>0</td> </tr> <tr> <td>B</td> <td>A</td> <td>C</td> <td>0</td> </tr> <tr> <td>C</td> <td>C</td> <td>B</td> <td>0</td> </tr> <tr> <td>D</td> <td>C</td> <td>B</td> <td>1</td> </tr> </tbody> </table>	PS	NS		Output	$w=0$	$w=1$	y_2y_1	$T2D1$	$T2D1$	z	A	A	B	0	B	A	C	0	C	C	B	0	D	C	B	1			
PS	NS			Output																											
	$w=0$	$w=1$																													
y_2y_1	$T2D1$	$T2D1$	z																												
A	A	B	0																												
B	A	C	0																												
C	C	B	0																												
D	C	B	1																												
	b)	Develop the state diagram and design a Mealy type FSM for a serial adder using D flip flops. Write the Verilog Code for the same	CO3	PO3	10																										
		OR																													

	8	a)	<p>Construct its transition table, excitation table, state table and the state diagram. Write Verilog code to realize the state machine.</p>	CO3	PO3	10
		b)	Develop the state diagram and design a Moore type FSM for a serial adder using D flip flops. Write the Verilog Code for the same	CO3	PO3	10
UNIT - V						
	9	a)	What is the role of FPGAs in ASIC market? Explain with neat diagrams, the architecture of Xilinx XC 4000 series	CO1	PO1	10
		b)	Explain with a neat diagram the high level architecture of a CPLD	CO1	PO1	10
OR						
	10	a)	What are PAL devices? With neat diagrams, explain the architecture of Altera 7000 series CPLD.	CO1	PO1	10
		b)	Implement the functions f1 and f2 using PLA of appropriate size. $f1 = \Sigma m (1,2,3,7)$ $f2 = \Sigma m (0,1,2,6)$. Draw PLA Table.	CO1	PO1	10
