

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Branch: Electrical and Electronics Engineering

Course Code: 22EE5PCDSM

Course: DC & Synchronous Machines

Semester: V

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Classify the motor according to their field winding connections with a neat circuit diagram & necessary equation	CO1	PO1	06
		b)	A 22.38kW, 440V, 4 pole wave wound D.C shunt motor has 840 armature conductors & 140 commutator segments. Its full load efficiency is 88% & shunt field current is 1.8A. if brushes are shifted backward through 2 segments from GNA. Find the demagnetizing & cross magnetizing ampere turns per pole	CO1	PO1	08
		c)	Mention the applications of the DC motor based on the field winding connection.	CO1	PO1	06
OR						
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	2	a)	Classify the method of speed control of a DC shunt motor and explain any one method with neat diagram	CO1	PO1	06
		b)	A DC shunt motor drives a centrifugal pump whose torque varies as the square of the speed. The motor is fed from a 200V supply and take 50A when running at 1000 rpm. What resistance must be inserted in the armature circuit in order to reduce the speed to 800 rpm? The armature and field resistances of the motor are 0.1 ohm and 100 ohm respectively.	CO1	PO1	08
		c)	With neat block diagram explain the power flow in a motor and generator. Also classify & explain different types of losses in detail with necessary equations	CO1	PO2	06
UNIT - II						
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	3	a)	List the relative merits and demerits of Swinburne's test	CO2	PO1	04
		b)	The Hopkinson's test on two similar shunt machines give the following full load data:	CO2	PO2	08

		<p>Line voltage is 110 V, field currents are 3 A and 3.5 A, line current 48 A, armature resistance of each machine is 0.035Ω, motor armature current is 230 A.</p> <p>Calculate the efficiency of each machine assuming a brush contact drop of 1 V per brush.</p>			
	c)	<p>A test on two identical motors with their field winding connected in series gave the following data when one machine acted as a motor other as a generator.</p> <p>Motor: Armature current= 56A, Armature Voltage= 590V & voltage drop across the field winding is 40V</p> <p>Generator: Armature current= 44A, Armature Voltage= 400V & voltage drop across the field winding is 40V</p> <p>Assume the armature resistance of each machine as 0.3 ohm.</p> <p>Calculate the efficiency of the motor and generator at this load</p>	CO2	PO2	08
		OR			
4	a)	Discuss about retardation test on a DC Motor. Also explain how stray loss component and moment of inertia are determined using this test.	CO2	PO2	10
	b)	<p>Two identical DC shunt machines, when tested by Hopkinson's method, gave the following data:</p> <p>Line voltage=250V</p> <p>Line current excluding the field current= 35A</p> <p>Motor armature current=240A</p> <p>Field current is 5A and 4.5A respectively. The armature resistance of each machine is 0.03Ω. Evaluate the efficiency of both the machines.</p>	CO2	PO2	10
		UNIT - III			
5	a)	List the advantages of rotating field construction in alternator.	CO3	PO1	04
	b)	Derive an expression for induced EMF in an alternator after deriving an expression for synchronous speed.	CO3	PO1	08
	c)	A 3-phase, 8 pole, 50 Hz star connected alternator has 96 slots with 4 conductors/slot. The coil span is 10 slots and the flux per pole is 0.06wb. Determine the line emf generated. If each phase is capable of carrying 650 amps, What is the kVA rating of the machine.	CO3	PO2	08
		OR			
6	a)	Explain the phenomenon of armature reaction in alternator while supplying lagging, and leading pf loads.	CO3	PO1	10
	b)	<p>A 400 V, 50 Hz, delta connected alternator has $X_d = 0.1 \Omega$ and $X_q = 0.07 \Omega$ and R_a is negligible. The alternator is supplying 1000 A at 0.8 p.f. lagging.</p> <p>(i) Find the excitation emf by neglecting saliency & assuming $X_d = X_s$.</p> <p>(ii) Find the excitation emf taking into account of saliency.</p>	CO3	PO2	10

UNIT - IV																	
7	a)	Define synchronous impedance? What is meant by load angle of an alternator?		CO3	PO1	04											
	b)	With phasor diagrams, explain the effect of operation at constant load with variable excitation of a synchronous motor		CO3	PO2	06											
	c)	A 3 phase, 6000V alternator has the following OCC at normal speed: <table border="1" style="display: inline-table; vertical-align: middle;"> <tr><td>I_f(A)</td><td>14</td><td>18</td><td>23</td><td>30</td><td>43</td></tr> <tr><td>E_L(V)</td><td>4000</td><td>5000</td><td>6000</td><td>7000</td><td>8000</td></tr> </table> <p>With armature short circuited and full load current flowing the field current is 17A and when the machine is supplying full load of 2000 kVA at zero power factor, the field current is 42.5A and the terminal voltage is 6000V. Determine the field current required when the machine is supplying the full load at 0.8 pf lagging</p>	I _f (A)	14	18	23	30	43	E _L (V)	4000	5000	6000	7000	8000	CO4	PO2	10
I _f (A)	14	18	23	30	43												
E _L (V)	4000	5000	6000	7000	8000												
OR																	
8	a)	Explain the slip test for the determination of direct axis and quadrature axis reactances with necessary diagram and equation		CO3	PO1	10											
	b)	A 415 V, 30 kVA, 50 Hz, 3 phase star connected alternator has the following O.C test data: <table border="1" style="display: inline-table; vertical-align: middle;"> <tr><td>I_f(A)</td><td>6</td><td>12</td><td>18</td><td>24</td><td>28</td></tr> <tr><td>E_L(V)</td><td>282</td><td>408</td><td>435</td><td>459</td><td>474</td></tr> </table> <p>An excitation of 8A produced full load current in the armature on short circuit. If $R_a = 0.5\Omega/\text{phase}$, Determine the voltage regulation at full load, 0.707 pf lagging by a) EMF method b) MMF method</p>	I _f (A)	6	12	18	24	28	E _L (V)	282	408	435	459	474	CO3	PO1	10
I _f (A)	6	12	18	24	28												
E _L (V)	282	408	435	459	474												
UNIT - V																	
9	a)	Derive an equation for Power Developed in non-salient-Pole Synchronous Generator with the help of phasor diagram.		CO4	PO1	10											
	b)	Discuss the effect of change in excitation with constant load on a synchronous machine connected to busbars in both generating and motoring modes.		CO4	PO1	10											
OR																	
10	a)	Derive the expressions for active and reactive power exchange between busbar and synchronous generator considering and neglecting the armature resistance. Also mention the condition at which maximum power occurs.		CO4	PO1	10											
	b)	With necessary diagram explain the concept of Power angle characteristics.		CO4	PO1	10											
