

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Branch: Electrical and Electronics Engineering

Course Code: 22EE5PCDSM

Course: DC & Synchronous Machines

Semester: V

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	With a neat sketch explain the construction of a DC generator mentioning the functioning of each part.			<i>CO1</i>	<i>PO1</i>	07
		b)	Discuss the effects of armature reaction in DC generator with necessary diagrams. Also suggest a method to reduce the effect of armature reaction.			<i>CO1</i>	<i>PO1</i>	07
		c)	A 250 V DC shunt motor has armature resistance of 0.25Ω , on load it takes an armature current of 50 A and runs at 750 rpm. If the flux of the motor is reduced by 10 % without changing the load torque, find the new speed of the motor.			<i>CO2</i>	<i>PO1</i>	06
	OR							
	2	a)	Discuss the process of commutation in DC machines. Which methods are adopted to improve the process of commutation?			<i>CO1</i>	<i>PO1</i>	07
		b)	Explain about any two methods of speed control in a DC series motor.			<i>CO1</i>	<i>PO1</i>	06
		c)	A 4 pole wave wound 220 V DC shunt generator has a full load current of 22 A and shunt field current of 2 A. Find per pole cross magnetizing ampere turn and demagnetizing ampere turn, if the brushes are given a lead of 2 commutator segments at full load. There are 111 commutator segments and 4 turns per coil. Find the additional field current required to neutralize the back ampere turn if the field winding has 600 turn per pole.			<i>CO1</i>	<i>PO1</i>	07
	UNIT - II							
	3	a)	Explain with neat sketch, Hopkinson test for finding the efficiency of DC Machines as motor and generator.			<i>CO2</i>	<i>PO1, 2</i>	08
		b)	Discuss in brief about a direct method of testing a DC motor.			<i>CO2</i>	<i>PO1, 2</i>	06

	c)	When running on no load, a 400 V shunt motor takes 5 A. Armature resistance is 0.5Ω and field resistance 200Ω . Find the output of the motor and efficiency when running on full load and taking a current of 50 A. Also find the percentage change in speed from no load to full load.	CO2	PO1, 2	06
		OR			
4	a)	Discuss about retardation test on a DC Motor. Also explain how stray loss component and moment of inertia are determined using this test.	CO2	PO1, 2	10
	b)	<p>The Hopkinson's test on two similar shunt machines give the following full load data:</p> <p>Line voltage is 110 V, field currents are 3 A and 3.5 A, line current 48 A, armature resistance of each machine is 0.035Ω, motor armature current is 230 A.</p> <p>Calculate the efficiency of each machine assuming a brush contact drop of 1 V per brush.</p>	CO2	PO1, 2	10
		UNIT - III			
5	a)	Revolving field is more suitable than revolving armature in a synchronous machine. Justify	CO3	PO1, 2	06
	b)	Discuss about different methods of starting of synchronous motor.	CO3	PO1, 2	07
	c)	A 3 phase, 16 pole alternator has 144 slots and 10 conductors per slot. Flux per pole is 0.03 Wb and speed is 375 rpm. The coil span is $5/6$ of the pole pitch. Find (i) frequency of generated emf (ii) phase and line emf.	CO3	PO1, 2	07
		OR			
6	a)	Derive an expression for induced EMF in an alternator after deriving an expression for synchronous speed.	CO3	PO1, 2	10
	b)	<p>A 400 V, 50 Hz, delta connected alternator has $X_d = 0.1 \Omega$ and $X_q = 0.07 \Omega$ and R_a is negligible. The alternator is supplying 1000 A at 0.8 p.f. lagging.</p> <p>(i) Find the excitation emf by neglecting saliency & assuming $X_d = X_s$.</p> <p>(ii) Find the excitation emf taking into account of saliency.</p>	CO3	PO1, 2	10
		UNIT - IV			
7	a)	With necessary circuit diagram, phasor diagram and expressions explain about pre-determination of voltage regulation using ZPF method for a lagging power factor load.	CO3	PO1, 2	10

	b)	A 400 V, 50 Hz, delta connected alternator has $X_d = 0.1 \Omega$ and $X_q = 0.07 \Omega$. Resistance of the armature is negligible. The alternator is supplying 1000 A at 0.8 p.f. lagging (i) Find the excitation EMF by neglecting saliency and assuming $X_d = X_q$. (ii) Find the excitation EMF taking into account of saliency.	CO3	PO1, 2	10
		OR			
8	a)	Describe about two bright and one dark lamp method of synchronizing a 3-phase alternator with the infinite bus. Mention the conditions need to be satisfied to synchronize a 3-phase alternator to the infinite bus.	CO4	PO1, 2	10
	b)	Two single phase alternators operating in parallel have induced EMFs on open circuit of $230 \angle 0^\circ$ and $230 \angle 10^\circ$ Volts and respective resistance of $j2 \Omega$ and $j3 \Omega$. Calculate (i) current supplied by each alternator (ii) terminal voltage (iii) power delivered by each of the alternators to a load of impedance 6Ω (resistive).	CO4	PO1, 2	10
		UNIT - V			
9	a)	Derive the expressions for active and reactive power exchange between busbar and synchronous generator considering and neglecting the armature resistance. Also mention the condition at which maximum power occurs.	CO4	PO1, 2	10
	b)	Explain the effect of change in excitation at constant load for a synchronous generator connected to a busbar with phasor diagram.	CO4	PO1, 2	10
		OR			
10	a)	With necessary diagram explain the concept of Power angle characteristics.	CO4	PO1, 2	10
	b)	With a phasor diagram discuss the effect of change in excitation at constant load for a synchronous motor connected to a busbar.	CO4	PO1, 2	10
