

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

Programme: B.E.

Semester: V

Branch: Electrical and Electronics Engineering

Duration: 3 hrs.

Course Code: 19EE5PCMC2

Max Marks: 100

Course: Electrical Machines - II

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	With a neat sketch describe the concept of armature reaction in a dc machines.	CO1	PO2	10
	b)	Explain any two methods of speed control of dc shunt motor and dc series motor.	CO1	PO2	10
OR					
2	a)	Explain typical T/I _a and N/I _a characteristics of DC Shunt and DC series Motors.	CO1	PO2	08
	b)	What is commutation? With a neat sketch explain the process of commutation?	CO1	PO2	12
UNIT - II					
3	a)	With a neat circuit obtain the expression for motor and generator efficiency by conducting test on DC series Motor.	CO2	PO2	10
	b)	The Hopkinson's test on two shunt machines gave the following results: Line voltage =230v, line current excluding field current = 30A, motor armature current = 230A, field currents 5A and 4A for generator and motor respectively. The armature resistance of each machine is 0.025ohm. Calculate the efficiency of both the machines.	CO2	PO3	10
UNIT - III					
4	a)	With a neat sketch explain the construction of Rotors in synchronous generators	CO3	PO2	07
	b)	Why Synchronous motors are not self-starting? Explain any two methods of starting synchronous motors.	CO3	PO2	08
	c)	The core length of a three phase, 6 pole, 50Hz, alternator is equal to the pole pitch. The slot pitch is 3cm, slots per pole per phase is 6 and number of turns per coil in double layer winding is 5.	CO3	PO3	05

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		Determine a) total number of slots, core diameter, and core length. b) emf generated if the flux per pole is 0.03wb.																								
		UNIT - IV																								
5	a)	Define Voltage Regulation. Describe the pre-determination of voltage regulation using EMF method.	CO3	PO2	10																					
	b)	Describe the slip test on Salient pole alternator and explain how the reactance's are calculated using it	CO3	PO2	10																					
		OR																								
6	a)	With a neat circuit diagram Explain the parallel operation of alternators and derive the expression for terminal voltage and circulating current. State the conditions to be satisfied for the parallel operation.	CO4	PO2	12																					
	b)	A 10MVA, 6.6kv, 3 phase star connected alternator gave open circuit and short circuit data as follows.	CO4	PO3	08																					
		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>Field current(A):</td> <td>25</td> <td>50</td> <td>75</td> <td>100</td> <td>125</td> <td>150</td> </tr> <tr> <td>OC Voltage(kv):</td> <td>2.4</td> <td>4.8</td> <td>6.1</td> <td>7.1</td> <td>7.6</td> <td>7.9</td> </tr> <tr> <td>SC Current (A)</td> <td>288</td> <td>528</td> <td>875</td> <td>-</td> <td>-</td> <td>-</td> </tr> </table> <p>Find the voltage regulation at full load 0.8 pf lagging by EMF method. Armature resistance per phase = 0.13 ohm.</p>	Field current(A):	25	50	75	100	125	150	OC Voltage(kv):	2.4	4.8	6.1	7.1	7.6	7.9	SC Current (A)	288	528	875	-	-	-			
Field current(A):	25	50	75	100	125	150																				
OC Voltage(kv):	2.4	4.8	6.1	7.1	7.6	7.9																				
SC Current (A)	288	528	875	-	-	-																				
		UNIT - V																								
7	a)	Derive the expression for power exchanged with nus bars and also draw the power angle characteristics of synchronous machine.	CO4	PO2	10																					
	b)	A 5MVA, 10kV, 1500 rpm, 3 phase 50 Hz, 4pole alternator is operating on infinite bus bar. Find the synchronizing power per mechanical degree of angular displacement under no load condition. $X_s=20\%$	CO4	PO3	10																					
