

|        |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|
| U.S.N. |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|

# B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

## May 2023 Semester End Make-Up Examinations

**Programme: B.E.**

**Branch: Electrical & Electronics Engineering**

**Course Code: 19EE5PCMC2**

**Course: ELECTRICAL MACHINES - II**

**Semester: V**

**Duration: 3 hrs.**

**Max Marks: 100**

**Date: 17.05.2023**

**Instructions:** 1. Answer any FIVE full questions, choosing one full question from each unit.  
2. Missing data, if any, may be suitably assumed.

### UNIT - I

|   |    |                                                                                                                                                                                                                                                                                                                                  |           |
|---|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 1 | a) | With neat diagrams and necessary expressions classify self-excited DC generators.                                                                                                                                                                                                                                                | <b>08</b> |
|   | b) | Discuss in detail i) $T_a$ Vs $I_a$ and ii) $N$ Vs $I_a$ characteristics with necessary plots and expressions for a DC series motor.                                                                                                                                                                                             | <b>06</b> |
|   | c) | An 8 pole DC shunt generator with 778 wave connected armature conductors and running at 500 rpm, supplies a load of $12.5 \Omega$ resistance at terminal voltage of 250 V. The armature resistance is $0.24 \Omega$ and the field resistance is $250 \Omega$ . Find the armature current, the induced emf and the flux per pole. | <b>06</b> |

### OR

|   |    |                                                                                                                                                                                                                                                                                             |           |
|---|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 2 | a) | With neat diagrams discuss about speed control of DC shunt motors.                                                                                                                                                                                                                          | <b>07</b> |
|   | b) | What is meant by armature reaction? Discuss with neat sketches the effects of armature reaction in a DC generator.                                                                                                                                                                          | <b>07</b> |
|   | c) | A 250 V, DC shunt motor takes 5 A on no load and runs at 1000 rpm. The total armature and shunt field resistances are $0.2 \Omega$ and $250 \Omega$ respectively. Determine the speed of the motor when on load taking a current of 50 A and the armature reaction weakens the field by 3%. | <b>06</b> |

### UNIT - II

|   |    |                                                                                                                                                                        |           |
|---|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 3 | a) | With a neat diagram derive expressions for motor and generator efficiency by conducting field test on a DC series motor.                                               | <b>10</b> |
|   | b) | With neat diagram obtain the expressions for efficiency of DC generator and motor using Back to back test. Also mention the advantages and disadvantages of this test. | <b>10</b> |

### UNIT - III

|   |    |                                                                                                                                                               |           |
|---|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 4 | a) | Recommend any two methods of starting of synchronous motor with proper explanations.                                                                          | <b>08</b> |
|   | b) | Describe pitch factor and distribution factor.                                                                                                                | <b>06</b> |
|   | c) | A 12 pole, 500 rpm, star connected alternator has 60 slots. The flux per pole is 0.02 Wb. The winding factor is 0.93. Determine the number of turns per phase | <b>06</b> |

**Important Note:** Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

to give a line EMF of 1492 V. Also determine the number of conductors per slot.

#### UNIT - IV

5 a) Discuss about MMF method or Ampere turn method to determine voltage regulation of a synchronous generator considering lagging power factor of operation. **08**

b) Justify why parallel operation of alternators is necessary. **04**

c) A three phase star connected alternator is rated at 1600 kVA and 13500 V. The effective armature resistance and synchronous reactance per phase are  $1.5 \Omega$  and  $30 \Omega$  respectively. Calculate the percentage voltage regulation for a load of 1280 kW at following power factors  
(i) 0.8 lagging      (ii) 0.8 leading **08**

#### OR

6 a) With necessary circuit diagram, phasor diagram and expressions explain about pre-determination of voltage regulation using ZPF method. **10**

b) Describe the method of determining voltage regulation using slip test for salient pole synchronous machine with neat circuit diagram and phasor diagram. **10**

#### UNIT - V

7 a) Describe about power angle characteristics with necessary circuit diagram and phasor diagram neglecting armature resistance. Also mark the steady state stability limit in the power angle characteristic plot. **08**

b) Explain the effect of change in excitation at constant load for a synchronous generator connected to a bus bar with phasor diagram. **07**

c) Briefly explain about V-Curves with a neat diagram. **05**

\*\*\*\*\*