

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Branch: Electrical and Electronics Engineering

Course Code: 22EE5PCMCT

Course: Modern Control Theory

Semester: V

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Justify with suitable equations that the state model of a system is not unique.	CO1	PO1	05
	b)	Construct the state model using phase variables if the system is described by the differential equation. Draw the state diagram. $\frac{d^3Y(t)}{dt^3} + 8\frac{d^2Y(t)}{dt^2} + 4\frac{dY(t)}{dt} + 2Y(t) = 7U(t)$	CO2	PO1	08
	c)	Obtain the state model in Jordan's canonical form of a system whose transfer function is $T(s) = \frac{1}{s^3 + 4s^2 + 5s + 2}$	CO2	PO1	07
OR					
2	a)	Define: (a) State (b) State Variable (c) State Vector (d) State Space (e) state trajectory	CO1	PO1	05
	b)	List the drawbacks of classical control system analysis and state how these are overcome in state space analysis.	CO1	PO1	05
	c)	Obtain the canonical state model for the given transfer function $\frac{Y(s)}{U(s)} = \frac{10}{s^3 + 4s^2 + 2s + 1}$	CO2	PO1	10
UNIT - II					
3	a)	Prove that the eigen values of matrix A are invariant under a linear transformation	CO2	PO1	04
	b)	For a system with given state model matrices $A = \begin{bmatrix} -1 & 0 & 1 \\ 1 & -2 & 0 \\ 0 & 0 & 3 \end{bmatrix}; B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}; C = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}^T$ Obtain the system transfer function.	CO2	PO1	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	<p>Consider the given matrix</p> $A = \begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$ <p>i) Determine the eigen values and eigen vectors of A ii) Show that the modal matrix indeed diagonalizes A</p>	CO2	PO1	08
		OR			
4	a)	State the various properties of State transition matrix.	CO1	-	07
	b)	Determine e^{AT} of $A = \begin{bmatrix} 0 & -1 \\ 2 & -3 \end{bmatrix}$ using power series method	CO2	PO1	05
	c)	<p>Determine the state transition matrix of $A = \begin{bmatrix} 0 & 0 & -2 \\ 0 & 1 & 0 \\ 1 & 0 & 3 \end{bmatrix}$</p> <p>by Cayley Hamilton method</p>	CO2	PO1	08
		UNIT - III			
5	a)	Define and explain the concept of controllability	CO3	PO1	04
	b)	Determine the controllability and observability of the following state model	CO3	PO2	08
		$\dot{X} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} X + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} u$ $Y = [10 \ 5 \ 1]X$			
	c)	Arrive at the state equations of the system shown in Fig 4c and determine its state controllability and observability.	CO3	PO2	08
		Fig.4c			
		OR			
6	a)	Explain how to determine controllability of a system using Kalman's method and Gilberts method.	CO3	PO1	10
	b)	Find whether the system given below is Observable or not using Kalman's and Gilberts test for the system given below:	CO3	PO1	10
		$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \text{ and } C = [3 \ 4 \ 1]$			

UNIT - IV					
7	a)	<p>Consider the system described by the state model, $\dot{x} = Ax$, $y = Cx$ where</p> $A = \begin{bmatrix} -1 & 1 \\ 1 & 2 \end{bmatrix}, C = [1 \ 0]$ <p>Design a full order state observer. The desired eigen values for the observer matrix are $u_1 = -5$, $u_2 = -5$.</p>	CO4	PO3	10
	b)	<p>Consider the system defined by</p> $\dot{x} = Ax + Bu$ <p>Where $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -5 & -6 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$</p> <p>By using the state feedback control $u = -Kx$, it is desired to have the closed loop poles at $s = -1 \pm j2$, $s = -10$.</p> <p>Determine the state feedback gain matrix K</p>	CO4	PO3	10
		OR			
8	a)	What is pole placement by state feedback? Explain. Also define the necessary and sufficient condition for arbitrary pole placement.	CO4	PO3	06
	b)	Define state observer and mention its advantages.	CO4	PO3	06
	c)	Design a full order state observer using direct substitution method:	CO4	PO3	08
		$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 20.6 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$ $y = [0 \ 1] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$			
		UNIT - V			
9	a)	Enumerate the common physical non-linearities of a system.	CO1	-	10
	b)	What are singular points? Explain different types of singular points based on the location of eigen values of the system.	CO1	-	10
		OR			
10	a)	Mention any four properties of non-linear systems.	CO1	-	04
	b)	With reference to non-linear system explain the following with suitable examples	CO1	-	08
		<ol style="list-style-type: none"> 1. Jump Resonance 2. Limit cycle 			
	c)	Determine the kind of singularity for the given differential equation $y'' - 8y' + 17y = 34$	CO2	PO1	08