

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2024 Semester End Main Examinations

Programme: B.E.

Branch: Electrical and Electronics Engineering

Course Code: 22EE5PCMCT

Course: Modern Control Theory

Semester: V

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Define the concept of i) State ii) State variables iii) State vector with an example.	CO1	-	06
	b)	Determine the state model of the given electrical system 	CO2	PO1	07
	c)	Derive the state model in canonical form of a system whose transfer function is $T(s) = \frac{8s^2 + 17s + 8}{(s+1)(s^2 + 8s + 15)}$	CO2	PO1	07
UNIT - II					
2	a)	Define Homogeneous state equation and Non-homogeneous state equation.	CO1	-	04
	b)	Determine the State transition matrix using Cayley – Hamilton method. $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix}$	CO2	PO1	06
	c)	Consider a state model with matrix $A = \begin{bmatrix} 0 & 2 & 0 \\ 4 & 0 & 1 \\ -48 & -34 & -9 \end{bmatrix}$ Determine a) Characteristic equation b) Eigen Values and c) Modal matrix. Also prove that the transformation $M^{-1}AM$ results in a diagonal matrix.	CO2	PO1	10
OR					
3	a)	State the various properties of state transition matrix.	CO1	-	05

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Reduce the given state model into its canonical form by diagonalizing matrix A: $\dot{X}(t) = \begin{bmatrix} 0 & 1 & -1 \\ -6 & -11 & 6 \\ -6 & -11 & 5 \end{bmatrix} X(t) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} U(t) \text{ and } Y(t) = [1 \ 0 \ 0] X(t).$	CO2	PO1	08
	c)	Derive the transfer function from state model.	CO2	PO1	07
UNIT - III					
4	a)	Use controllability and observability matrices to determine whether the system given below is completely controllable and completely observable. $A = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & -3 \\ 0 & 1 & -4 \end{bmatrix}, \quad B = \begin{bmatrix} 40 \\ 10 \\ 0 \end{bmatrix}, \quad C = [0 \ 0 \ 1]$	CO3	PO2	10
	b)	Define controllability and observability. Explain how to determine the same using any one method. Discuss the duality of controllability and observability.	CO3	PO2	10
UNIT - IV					
5	a)	Consider the system defined by $\dot{X} = AX + BU$ where $A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & -1 & 1 \\ 0 & 2 & 0 \end{bmatrix}, B = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}, C = [0 \ 0 \ 1]$ Design an observer such that the eigen values are placed at $S = -3 \pm j1, s = -4$. Determine the state observer gain matrix using Ackerman's formula	CO4	PO3	10
	b)	Consider the system defined by $\dot{X} = AX + BU$ where $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -5 & -6 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ by using the state feedback control $u = -kx$, it is desired to have the closed loop poles at $s = -2 \pm j4, s = -10$. Determine the state feedback gain matrix K using transformation matrix.	CO4	PO3	10
UNIT - V					
6	a)	Draw the input-output characteristics of the following nonlinearities and explain: i) Dead zone ii) On-off with dead zone iii) Saturation iv) On –off with hysteresis.	CO1	-	08
	b)	Classify singular points based on the location of eigen values of the system.	CO2	PO1	08
	c)	What are the characteristics of nonlinear system?	CO1	-	04
OR					
7	a)	What is intentional nonlinearity? Why is it used? Give one example. Compare intentional nonlinearity with inherent nonlinearity.	CO1	-	06

	b)	With reference to a nonlinear system explain: i) Jump response ii) Limit cycles.	CO1	-	06
	c)	For a nonlinear system given by: $\ddot{y} + 0.5\dot{y} + 2y + y^2 = 0$, find the singularities and classify the singular points.	CO2	PO1	08

REAPPEAR EXAMS 2023-24