

B.M.S. College of Engineering, Bengaluru-560019

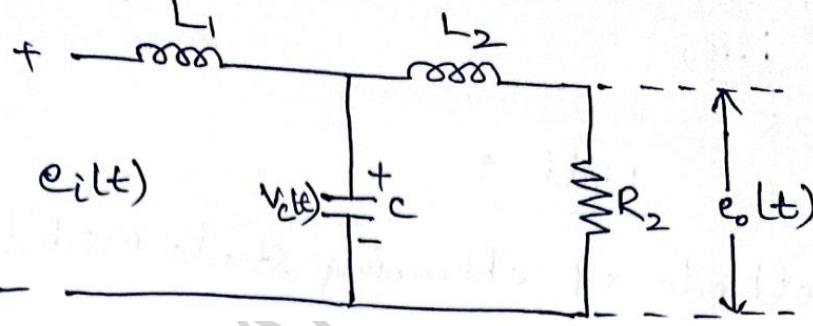
Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Electrical and Electronics Engineering


Duration: 3 hrs.

Course Code: 23EE5PCMCT

Max Marks: 100

Course: Modern Control Theory

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Obtain the state model of the given electrical system in its standard form.	CO2	PO2	10
	b)	For the given transfer function, obtain state model using direct decomposition method.	CO2	PO2	10	
OR						
2	a)	Construct the state model using phase variables. If the system is described by the differential equation: -	CO2	PO2	10	
		$\frac{d^3y(t)}{dt^3} + 4\frac{d^2y(t)}{dt^2} + 7\frac{dy(t)}{dt} + 2y(t) = 5U(t)$				
	b)	With an example, explain two methods of obtaining state model using transfer function.	CO2	PO2	10	

UNIT - II					
3	a)	Derive an expression for the homogenous equation in the scalar form by classical method solution of state equation and also list out any three properties of state transition matrix.	CO1	PO1	10
	b)	Calculate the Eigen values, eigen vectors, modal matrix for $A = \begin{bmatrix} 0 & 0 & 1 \\ 2 & 0 & 0 \\ -8 & -2 & -5 \end{bmatrix}$	CO2	PO2	10
OR					
4	a)	With an example, explain Eigen Values, Eigen Vectors, Modal matrix(m) and Vander Monde matrix (V)	CO1	PO1	10
	b)	Determine the state Transition Matrix using Power Series Method for the given matrix $A = \begin{bmatrix} 0 & -1 \\ 2 & -3 \end{bmatrix}$ and discuss on Cayley Hamilton method.	CO2	PO2	6+4=10
UNIT - III					
5	a)	Define Controllability. Explain with an example both Kalman's test for Controllability and also Gilberts test for controllability.	CO3	PO2	10
	b)	A system represented by following state model is controllable but not observable. Show that non-observability is due to pole-zero cancellation. $\dot{x}(t) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t)$ $y(t) = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} x(t)$	CO3	PO2	10

OR					
6	a)	Define Observability. Explain with an example both Kalman's test for Observability and also Gilbert's test for Observability.	CO3	PO2	10
	b)	Use Controllability and Observability matrices to determine whether the system represented by the signal flow graph in Fig.6.b is completely controllable and observable.	CO3	PO2	10
UNIT - IV					
7	a)	Design a state observer using direct substitution method so that the eigen values are at -4 & $-3 \pm j1$. An observable system is described by	CO4	PO3	10
		$\dot{x} = \begin{bmatrix} 1 & 2 & 0 \\ 3 & -1 & 1 \\ 0 & 2 & 0 \end{bmatrix}x + \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}u$ $y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}x$			
	b)	Consider the linear system described by transfer function	CO4	PO3	10
		$\frac{Y(s)}{U(s)} = \frac{10}{s(s+1)(s+2)}$ <p>Design a feedback Controller with a state feedback so that the closed loop poles are placed at $-2, -1 \pm j$.</p>			
OR					
8	a)	Illustrate on state observer and explain the methods to find K_e .	CO1	PO1	10

	b)	<p>It is desired to place the closed loop poles of the following system at $S=-3$ and $S=-4$ by a state feedback controller with the control $u=-kx$. Determine the state feedback gain matrix using all the methods.</p> $\dot{x} = \begin{bmatrix} 0 & 1 \\ -1 & -3 \end{bmatrix}x + \begin{bmatrix} 0 \\ 2 \end{bmatrix}u$ $y = \begin{bmatrix} 1 & 0 \end{bmatrix}x$	CO4	PO3	10
UNIT - V					
9	a)	<p>Explain the following phenomena with examples, in a non-linear system</p> <p>(i) Saturation (ii) Friction (iii) Backlash (iv) dead zone (v) Relay.</p>	CO1	PO1	10
	b)	<p>Determine the kind of singularity for each of the following for each of the differential equations:</p> <p>(i) $\ddot{y} + 3\dot{y} + 2y = 0$</p> <p>(ii) $\ddot{x} + 0.5\dot{x} + 2x = 0$</p>	CO3	PO3	10
OR					
10	a)	<p>Describe in detail Isocline method for construction of Phase Trajectory with an example.</p>	CO1	PO1	10
	b)	<p>For a nonlinear system given by: $\ddot{y} + 0.5\dot{y} + 2y + y^2 = 0$, find the singularities and classify the singular points.</p>	CO3	PO3	10
